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Executive summary

This deliverable contributes to work-package 2 “Assessing the impact of green, digital and twin
transition on inequalities”. It focuses on objective 3 “identifying new forms of (social) inequality
that could emerge from the twin transition” and more precisely on inequalities in terms of social
capital that could be induced by recommendation algorithms.

Specifically, it reports on the work performed in task 2.4 “Algorithmic fairness and inequality”
and how it will feed in task 4.5. The core motivation for task 2.4 is the remark that, in the
context of the digital transition, recommendation algorithms have become a key determinant
of the formation of socio-economic relationships and, more broadly, of the social structure.
This naturally raises the question of the impacts of these algorithms on inequalities in terms
of social capital/status/centrality. To address this question, task 2.4 has developed analytical
and computational models of social network formation processes induced by recommendation
algorithms. These models allow to characterize how recommendation algorithms determine the
structure of online social networks and the associated distribution of centrality.

Therefrom, one can investigate the impact of recommendation algorithms on inequalities
in terms of access to information social capital, and more broadly on social interactions. The
models also allow to define systemic measures of algorithmic fairness and to investigate the
potential trade-offs between fairness and efficiency for online platforms. We find a strong re-
lationship between the structure of users’ preferences and the properties of the algorithms.
When preferences are strongly correlated, the more hierarchical algorithms perform better as
they rapidly identify the objects/followees collectively preferred by users. When preferences are
negatively correlated, uniform recommendation algorithms perform as well (or even better) than
hierarchical algorithms as they allow for an efficient exploration of the network. In terms of fair-
ness, we find that the uniform recommendation algorithm is always perfectly fair. For low levels
of correlation between preferences, hierarchical algorithms do not entail substantial divergence
from this fair benchmark because no object/followee can sustain a high degree. Likewise, for
high levels of correlation, unfairness is limited because the set of efficient networks is small and
rather homogeneous as most agents seek to form links with the few “star” objects. Unfairness
reaches a maximum for intermediary level of correlation because this is a domain where (i)
central nodes can emerge and be identified by hierarchical algorithms, (ii) the set of efficient
networks is sufficiently large and heterogeneous for divergence with the uniform benchmark to
materialize.

Our results hence highlight the presence of a trade-off between efficiency and fairness (in
particular for intermediate level of preference correlation), as the hierarchical recommendation
algorithms that ensure fast convergence to efficient networks are also those that lead to high
level of unfairness. However, our analysis also hints at a simple solution to mitigate this trade-
off. The designer of an online platform can adapt the recommendation algorithm to the different
phases of the network formation process. Hierarchical algorithms can be used in the early
phase of the process to reach rapidly the set of efficient networks and ensure user satisfaction
and adoption. Once the user base is established, more uniform recommendation algorithms
can be used to further explore the set of potential networks and guarantee fairness without
paying an efficiency cost. There are evidences of platform behaviour being aligned with our
conclusions in the sense that recommendation algorithms have been updated to foster a more
extensive exploration of the network and the recommendation of more diverse content. Notably,
a major wave of such algorithmic updates has occurred in 2024.

Beyond fairness “per se”, recommendation algorithms can also have substantial impacts
on socio-economic dynamics. First, they induce changes on the structure of social networks.
Uneven distributions of centralities in social networks can increase inequality in terms of access
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to information, social capital, or symbolic power. Second, network structure is a key determinant
of technological diffusion and adoption. It is thus key for the success of the twin transition to
have network structures aligned for rapid and efficient technological diffusion. Third, social
networks are key in the formation of public opinion and in its potential polarization. A successful
twin transition requires social network structures that are conductive to consensus formation
rather than polarization. Overall, it appears that some form of monitoring and/or regulation of
recommendation algorithms is warranted. A first step in this direction is the requirement to
make algorithms available to regulators (and ideally to users as well) in order to evaluate their
performance in terms of fairness and their potential systemic bias. A second step would be
the actual regulation of the algorithms. Our results suggest that a potential route would be to
impose to recommendation algorithms specifications that express fairness requirements. This
approach would also avoid the perils of uniformization by regulation.
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1 Introduction

1.1 Context and motivation

With the rise of electronic commerce and online social networks, recommender systems have
become key drivers of socio-economic interactions in a wide range of domains such as the
formation of commercial relationships [Dinerstein et al., 2018, Johnson et al., 2023], the organ-
isation of the labor market [Komiyama and Noda, 2024], or the dynamics of opinions [Santos
et al., 2021, Cinus et al., 2022]. This structural role of recommendation algorithms leads to
the emergence of ethical and social standards for companies deploying these algorithms [Red-
man, 2019] and raises the question of algorithmic regulation in the public debate [Makridis and
Teodorescu, 2024]. Specifically, algorithmic fairness has emerged as a key instance of the
debate on global inequalities in the online realm [Kleinberg et al., 2018, Barocas et al., 2023].

The existing literature has mostly focused on fairness in the context of decisions based on
the predictions of statistical and machine learning models [Mitchell et al., 2021, Wang et al.,
2023]. Specifically, it has investigated what fairness might mean in the context of decisions
based on the predictions of statistical and machine learning models [Mitchell et al., 2021]. Yet,
existing analysis provide an incomplete perspective by focusing mostly on the outcomes of
single instances of recommendation and by adopting a purely statistical approach that has
difficulties shading light on the algorithmic drivers of these discriminations.

Against this background, there is increasing concern about systemic bias in recommenda-
tion algorithms. First, an emerging issue in the public debate is the fact that the recommen-
dation algorithms might hinder access to information (see Figure 1). Second, major episodes
of manipulations of recommender systems have been recorded recently, in particular during
the last Romanian presidential election. In the regulation sphere, the European Commission
has recently sent requests for information to YouTube, Snapchat, and TikTok on recommender
systems under the Digital Services Act1. The commission is concerned by the potential role of
recommendation algorithms in amplifying systemic risks “including those related to the electoral
process and civic discourse, users’ mental well-being (e.g. addictive behaviour and content
“rabbit holes”), and the protection of minors”. Rather than statistical information, the commis-
sion is asking the platforms about the parametrization of recommendation algorithms. This
highlights the shift from a regulation based on the statistical properties of algorithms towards a
more proactive perspective focusing on the design and the functioning of the algorithms.

Accordingly, our analysis focuses on the impacts of recommendation algorithms on the for-
mation of social networks. This allows first to analyse algorithmic fairness from a systemic
perspective. Beyond fairness “per se”, recommendation algorithms can also have substantial
impacts on socio-economic dynamics. First, they induce changes on the structure of social net-
works. Uneven distributions of centralities in social networks can increase inequality in terms
of access to information, social capital, or symbolic power. Second, network structure is a
key determinant of technological diffusion and adoption. It is thus key for the success of the
twin transition to have network structures aligned for rapid and efficient technological diffusion.
Third, social networks are key in the formation of public opinion and in its potential polarization.
A successful twin transition requires social network structures that are conductive to consensus
formation rather than polarization.

1https://digital-strategy.ec.europa.eu/en/news/commission-sends-requests-information-youtube-snapchat-and-
tiktok-recommender-systems-under-digital
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Figure 1: Illustration, through three recent media pieces, of the raising concern
about recommendation algorithms hindering access to information. See respec-
tively https://medium.com/@frankhoang161/algorithms-limiting-exposure-to-information-
16af4cfe76c https://www.technologyreview.com/2024/08/16/1096276/spotify-algorithms-
music-discovery-ux/ and https://english.elpais.com/technology/2024-11-23/why-bluesky-is-
different-the-freedom-to-choose-content-vs-the-dictatorship-of-the-algorithm.html

1.2 Our approach

In order to contribute to the understanding of the systemic properties of recommendation al-
gorithms, with a specific focus on their properties in terms of fairness and, we aim to develop
a model of the long-term evolution of economic networks governed by recommendation algo-
rithms, define measures of fairness that account for long-term and structural impacts, iden-
tify fairness-efficiency trade-offs in this context, and provide algorithmic solutions to overcome
them.

More precisely, we introduce a dynamic model of network formation driven by link recom-
mendation algorithms and utility-based individual choices. We consider a bipartite network
where agents link towards certain objects. This framework encompasses the case of a social
networks where the set of objects is the set of agents. Each agent has a preference over poten-
tial links, as well as a capacity of attention corresponding to the maximal number of links that
it can form. The network is controlled by a platform which, at every time step, recommends a
link to an agent. Assuming that link acceptance is utility-based, this recommendation algorithm
induces a Markov process over the set of networks. If every link has a positive probability to
be recommended, the process converges towards the class of efficient networks where each
agent maximizes its utility, i.e., is linked to its preferred followees.

In this setting, we measure the efficiency of a recommendation algorithm, from the point
of view of the platform and its users, via the speed at which it reaches the recurrent class of
efficient networks. We then measure fairness, from the point of view of objects/followees, via
the properties of the stationary distribution of networks. Namely, by considering the link allo-
cation problem as a bankruptcy problem [see Aumann and Maschler, 1985], we provide micro-
foundations for measuring the fairness of a recommendation algorithm through the entropy of
its invariant distribution, or more generally through the Kullback-Leibler divergence between this
distribution and a fair benchmark.

In order to operationalise these definitions, we provide analytical characterizations of the hit-
ting time to the recurrent class and of the invariant distribution of the Markov chain associated
to a recommendation algorithm. We further provide an exact algorithm for the computation of
the invariant distribution when the associated Markov chain is time-reversible. These results
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allow us to investigate precisely the fairness efficiency trade-off for link recommendation algo-
rithms. We characterize algorithms in terms of the strength of their hierarchical features, i.e.,
strength of the attachment parameter for preferential attachment type of algorithms or length of
the sequence of recommendations for followee of followee type of algorithms. We find a strong
relationship between the structure of users’ preferences and the properties of the algorithms.
When preferences are strongly correlated, the more hierarchical algorithms perform better as
they rapidly identify the objects/followees collectively preferred by users. When preferences
are negatively correlated, uniform recommendation algorithms perform as well (or even better)
than hierarchical algorithms as they allow for an efficient exploration of the network. In terms
of fairness, we find that the uniform recommendation algorithm is always perfectly fair. For low
levels of correlation between preferences, hierarchical algorithms do not entail substantial diver-
gence from this fair benchmark because no object/followee can sustain a high degree. Likewise,
for high levels of correlation, unfairness is limited because the set of efficient networks is small
and rather homogeneous as most agents seek to form links with the few “star” objects. Unfair-
ness reaches a maximum for intermediary level of correlation because this is a domain where
(i) central nodes can emerge and be identified by hierarchical algorithms, (ii) the set of efficient
networks is sufficiently large and heterogeneous for divergence with the uniform benchmark to
materialize.

Our results hence highlight the presence of a trade-off between efficiency and fairness (in
particular for intermediate level of preference correlation), as the hierarchical recommendation
algorithms that ensure fast convergence to efficient networks are also those that lead to high
level of unfairness. Our analysis also hints at a simple solution to mitigate this trade-off. It
suffices to update the recommendation algorithm once the class of efficient networks is reached.
More precisely, the designer of an online platform can adapt the recommendation algorithm to
the different phases of the network formation process. Hierarchical algorithms can be used in
the early phase of the process to reach rapidly the set of efficient networks and ensure user
satisfaction and adoption. Once the user base is established, more uniform recommendation
algorithms can be used to further explore the set of potential networks and guarantee fairness
without paying an efficiency cost. This can notably be implemented through the Metropolis
process, which will have the effect to obtain a uniform stationary distribution, hence ensuring
perfect fairness.

We believe that our results and methodologies can have a strong impact on the design of
platforms recommending links in a social network. Apart from giving analytical results on the
convergence and stationary distribution on the states of the networks, the paper suggests a
general methodology to achieve both rapid convergence and fairness.

1.3 Relation with the literature

Our results relate to two main streams of literature. On the one hand, the expanding literature
that aims to quantify the fairness of algorithms used in socio-economic applications. On the
other hand, the theoretical literature that investigates network formation processes and their
social efficiency.

As for the algorithmic fairness literature, it has mostly focused on “what fairness might mean
in the context of decisions based on the predictions of statistical and machine learning models.”
[Mitchell et al., 2021]. Numerous surveys [see e.g. Caton and Haas, 2020, Barocas et al., 2023]
are available on the matter. A first strand of literature has focused on the potential emergence
of algorithmic biais against certain groups in relation to attributes such as gender, age, or racial
origin [Kleinberg et al., 2018]. This has led to a number of domain-specific analysis, inves-
tigating algorithmic discrimination in contexts such as labor markets [Lambrecht and Tucker,
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2019, Komiyama and Noda, 2024], online matching markets [Ma et al., 2021, 2023], credit
scoring [Bono et al., 2021, Hurlin et al., 2024], criminal justice [Berk et al., 2017], or healthcare
decisions [Yang et al., 2023]. Our approach differs from these analysis as the source of discrim-
ination we consider is endogenous, being related to network characteristics, and as we analyze
fairness form the point of view of followees/suppliers rather than from that of users/applicants.

From this latter perspective, our contribution is closely related to a number of contributons
that have analyzed algorithmic fairness from the point of view of sellers in online advertising
markets and marketplaces [see e.g. Cao et al., 2024, Bateni et al., 2022]. Two common objec-
tives in this thread of literature are the definition of fairness metrics and the design of algorithms
that overcome the fairness-efficiency trade-off. In particular, Lejeune and Turner [2019] investi-
gate a Gini index based measure and study an optimization problem to maximize the spread of
impressions across targeted audience segments. Balseiro et al. [2021] define a fairness mea-
sure based on a nonlinear regularizer and propose an online resource-allocation algorithm,
with the aim of maximizing efficiency and fairness subject to a resource constraint. Bateni et al.
[2022] study a setting where an online platform dynamically allocates a collection of goods (e.g.
advertising slots) to budgeted buyers (e.g. advertisers) and considers a weighted proportional
fairness metric. Li et al. [2024] investigate how the value from advertising in a dynamic alloca-
tion problem can be adjusted by a general fairness metric. Our approach shares the focus of
the online advertising literature on the measure of fairness and the mitigation of the fairness vs
efficiency trade-off. However, our representation of recommendation algorithms as stochastic
processes provides a different perspective. It leads to a representation of the evolution of the
system as a Markov chain, to a measure of efficiency through stopping time, and to a measure
of fairness through the deviation from a benchmark distribution. Furthermore, we approach the
problem from a systemic perspective where the utility of agents/followers, the efficiency of the
platform, and the fairness to the objects/followees are linked through a network structure.

With respect to the network formation literature [see e.g. Jackson, 2008, Bramoullé et al.,
2016], the main innovation of our work is to consider a recommendation algorithm as the central
institution coordinating the formation of links, whereas the existing literature mostly focuses on
fully decentralised interactions. From this perspective, our approach relates to the matching
literature [Roth, 2015], although the latter focuses on the design of optimal algorithms rather
than on the analysis of empirical ones. Also, our algorithmic approach allows to represent
explicitly the network formation process, and to analyze its efficiency, whereas the existing
literature focuses mostly on equilibrium networks in a game-theoretic sense. Furthermore, most
of the existing contributions focus on social welfare, measured as the sum of individual utilities
at equilibrium, rather than on fairness or equity. A notable exception is Navarro [2014] that puts
forward a network formation processes that is both stable in the sense of Jackson and Wolinsky
[1996] and fair in the sense of Myerson Myerson [1977].

Finally, its network perspective relates our work to the literature on link recommendation
algorithms [e.g. Ferrara et al., 2022, Santos et al., 2021, Cinus et al., 2022]. In this setting,
unfairness has been linked to the biais of algorithms towards extreme content/actors and its
impact on the polarization of users and of the public debate [Vaidhyanathan, 2018, Eisenstat,
2021, Grabisch et al., 2023]. Our work draws inspiration from the regulatory measures that
have been proposed in this framework [Ghosh, 2021] such as modifying the structure of inter-
actions [Fagan, 2018], increasing platform liability for user-generated content, requiring algo-
rithmic transparency, or fostering platform self-regulation [Ghosh, 2020].
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1.4 Structure of the report

The rest of this report is structured as follows. Sections 2 to 5 describes our analytical model
(that is also reported in the companion working paper [see Grabisch et al., 2024]). Section 3
introduces measures of efficiency for recommendation algorithms. Section 4 investigates the
structural properties of a set of standard recommendation algorithms. Section 5 provides a
micro-founded measure of fairness for recommendation algorithms and analyze the trade-off
between efficiency and fairness. Section 6 discusses the policy implications of our results and
concludes.
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2 Mathematical and computational analysis of recommendation
algorithms

2.1 Structure of interactions and recommendation algorithm

We consider the formation of bipartite networks between a set N of n agents and a set M of
m objects. The set of potential links between agents and objects is L = N ×M . Accordingly,
networks are represented by adjacency matrices W ∈ {0, 1}n×m where Wi,j = 1 if there is
a directed link between agent i and object j. We denote by W the set of all such adjacency
matrices. Given a network W , for each agent i ∈ N , we denote by Mi(W ) := {j ∈ M |
Wi,j = 1} the set of objects to whom it is connected, also referred to as its set of “followees”.
Accordingly, for each object j ∈ M , we denote by Nj(W ) := {i ∈ N | Wi,j = 1} its set of
“followers”. The cardinal of the set of followees of i is denoted by d+i (W ) and referred to as the
out-degree of agent i while the cardinal of the set of followers of j is denoted by d−j (W ) and
referred to as the in-degree of object j.

Remark 1. A particular case of interest subsumed in our framework is that of social networks
where the objects are the agents themselves, i.e., N = M .

In this setting, we consider network formation processes driven by the interplay between
individual choices and recommendation algorithms. Individual characteristics are given by a
budget/capacity of attention and a preference ordering over objects. The capacity of attention
of agent i is defined as the maximal number of active links di that it can maintain. The ordering
over objects is represented by a utility function ui : M → R+ where for j, k ∈ M one has
ui(j) ≥ ui(k) if i prefers object j to object k. Assuming additivity, this utility over objects induces
a utility over networks for i, Ui : W→ R+, defined as the sum of the utility of the followees of i,
i.e.,

Ui(W ) =
∑
j∈M

Wi,jui(j). (1)

The recommendation algorithm characterizes the organization/institution (typically an online
platform) that steers network formation. It suggests to agents with some probability a link in
L = N ×M. Formally, a recommendation algorithm is a transition probability from the set of
networks W to the set of links L, i.e., a matrix Q ∈ RW×L so that, given the state of the network
W ∈W, Q(W, (i, j)) is the probability that the link (i, j) is recommended. In particular, one has∑

(i,j)∈LQ(W, (i, j)) = 1 for all W ∈ W and Q(W, (i, j)) ≥ 0 for all (i, j) ∈ L. The evolution of
the network is then determined by a sequential process of link recommendation by the algorithm
and link formation by the agents. We assume that this process is characterized by the following
principles.

Definition 1. A network formation process governed by a recommendation algorithm is such
that:

(1) Only recommended links can be formed.

(2) Agents only accept to form links that (weakly) increase their utility.

(3) The number of links that an agent can form is bounded by its capacity of attention.

Formally, the network formation process associated to a recommendation algorithm Q and a
link capacity d = (d1, . . . , dn) is a Markov chain on W with transition matrix P(Q,d) such that for
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W ′ 6= W :

P(Q,d)(W,W
′) =



Q(W, (i, j)) if W ′ =W + Vi,j , Ui(W ′) ≥ Ui(W ) and d+i (W ) < di

Q(W, (i, j))

|{` | Ui(W + Vi,j − Vi,`) ≥ Ui(W )}| if W ′ =W + Vi,j − Vi,k, Ui(W ′) ≥ Ui(W ) and d+i (W ) = di

0 otherwise
(2)

where Vi,j denotes the matrix for which (i, j) is the only non-zero coefficient, with value 1.

Hence, we assume that an agent who has not reached his maximal linkage capacity forms
every desirable link that is recommended (first line of the definition of PQ) whereas an agent
that has reached its maximal linkage capacity forms a recommended link by substituting a lower
utility link chosen uniformly at random among the existing ones (second line of the definition of
PQ). The probability that the network does not change following a recommendation is implicitly
defined by complementarity as PQ(W,W ) = 1−

∑
W ′ 6=W PQ(W,W ′). Our analytical specifica-

tion of the network formation process also implicitly assumes that a single link is recommended
(and potentially formed) every period.

In the following, for sake of simplicity, we will denote P(Q,d) by PQ whenever there is no risk of
ambiguity.

2.2 Examples of recommendation algorithms

Our modelling framework allows to represent all Markovian recommendation algorithms, i.e.,
algorithms where the recommendation only depends on the current state of the network. That
is actually the case for most algorithms implemented in online platforms, which generally derive
their recommendations on the basis of network metrics that are functions of the current state of
the network. We highlight below a few algorithms of theoretical and/or of operational relevance.
A more comprehensive list of algorithms can be found, e.g., in Ferrara et al. [2022].

Uniform recommendation We first consider, as a benchmark, the uniform recommendation
algorithm where each link is recommended with an equal probability independently of the struc-
ture of the network. With L denoting the set of all possible links, the uniform recommendation
algorithm is characterized by the transition matrix U ∈ RW×L

+ such that for all (W, (i, j)) ∈W×L,
one has

U(W, (i, j)) = 1/|L| := 1/nm. (3)

In case N = M , loops are excluded so that |L| = n(n− 1). (todo really ?)

Preferential attachment We then consider a degree-based recommendation algorithm, where
nodes with higher in-degree have a larger probability to be recommended. Namely, we consider
the preferential attachment (PA) algorithm2 defined for every (W, (i, j)) ∈ W × L by:

PA(W, (i, j)) =
ε+ d−j (W )

m
∑

h∈M (ε+ d−h (W ))
. (4)

where ε > 0 is a constant.
2The probability of recommendation is set proportional to ε + d−j (W ) rather than to d−j (W ) to ensure that the

algorithm has full support (see Assumption A below). We consider ε = 1 by default in the following.
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We further consider extensions of the preferential attachment algorithms where the strength
of the degree-based recommendation is specified by a function f of the degree. Namely, we call
“general preferential attachment” any recommendation algorithm (PAf ) of the following type:

PAf (W, (i, j)) =
f(d−j (W ))

m
∑

h∈M f(d−h (W ))
(5)

where f : N → R++ is an increasing function of the degree, which satisfies f(d) > 0 for every
integer d > 0. The standard PA algorithm corresponds to f(d) = 1 + d, but other functions are
natural, for example f(d) = 1 + dα with α > 0. A value greater (resp., smaller) than 1 for α
indicates a stronger (resp., weaker) preferential attachment effect.

2-hops In the case of social networks, i.e., M = N , the followee of followee algorithm recom-
mends to an agent a followee of one of its followees. It is thus similar to the 2-hops algorithm
(see Ferrara et al. [2022]) in the sense that it recommends an agent that is two steps away from
the agent receiving the recommendation. Formally, this corresponds to the transition probability
given by:

FF(W, (i, j)) =
W 2
ij∑

h,k∈N
h6=k

W 2
hk

. (6)

We shall consider a slightly modified version in order to ensure that the algorithm has full support
in the sense of Assumption A below:

FF(W, (i, j)) =
ε+W 2

ij∑
h,k∈N
h6=k

(ε+W 2
hk)

(7)

with ε > 0.
We shall also consider n-hops variants of the algorithm that recommend the n-th followee,

i.e., an agent at a distance of n in the followee network. Namely:

FFn(W, (i, j)) =
ε+Wn

ij∑
h,k∈N
h6=k

(ε+Wn
hk)

(8)

with ε > 0.

2.2.1 Asymptotic properties of the dynamics

The (random) network formation process induced by a recommendation algorithmQ is a Markov
chain with set of states W0 = {W ∈ W : d+i (W ) 6 di,∀i ∈ N} and transition matrix PQ.
Starting from an arbitrary (possibly empty) network, the algorithm sequentially proposes links
to agents, which are accepted and included in the network if they represent a utility improvement
for the agents. It is straightforward to remark from Definition 1 that the utility of agents is non-
decreasing as the algorithm unfolds. Furthermore, if the algorithm is able to recommend the
highest utility links, the network will eventually reach a maximal level of utility for each agent i,
given its capacity di and its preferences. In other words, agent i will only form links with the set
Ei(u) of objects that yield maximal utility within capacity:

Ei(u) = {j ∈M : |{k ∈M : ui(k) > ui(j)}| < di}. (9)
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We shall refer to Ei(u) (Ei for short in absence of ambiguity about the preference profile) as
the set of acceptable objects for agent i and call a link ` = (i, j) acceptable if j ∈ Ei. We shall
denote by La the set of acceptable links and by Lna := L \ La the set of non acceptable links.
We define the set of efficient networks as those containing only acceptable links, that is

E := {W ∈W0 : Wi,j > 0⇒ (i, j) ∈ La}.

Given that La only contains links yielding maximal utility, the set of efficient networks can equiv-
alently be defined as the set of networks maximizing total utility, that is:

E = argmaxW0

∑
i∈N

Ui = {W ∈W0 :
∑
i∈N

Ui(W ) = max
W ′∈W0

∑
i∈N

Ui(W
′)}.

As mentioned above, the fact that the link acceptance process is utility based implies that
the utility of agents is non-decreasing as the algorithm unfolds. If the algorithm furthermore
recommends efficient links with some probability, the set of efficient networks will be reached,
eventually. More precisely, let us introduce the following assumption:

Assumption A. For all W ∈W0 and ` ∈ La, one has Q(W, `) > 0.

Remark 2. Assumption A holds in particular ifQ has full support in the sense that for allW ∈W0

and each ` ∈ L one has Q(W, `) > 0.

Assumption A implies that E is the unique recurrent class of PQ.

Lemma 1. If Q satisfies assumption A, then E is the unique recurrent class of PQ, i.e., all the
recurrent states of PQ are such that each agent has maximal utility. In addition, E is aperiodic.

Standard results from the theory of Markov chains imply that the Markov chains induced by
PQ will reach E in a finite expected time and that the average time they spend in the network
configuration W is given by the invariant distribution of PQ, which has support in E. Namely,
one has the following proposition.

Proposition 1. Let (XQ
t )t∈N be a Markov chain with transition matrix PQ, where Q is such that

Assumption A holds. Then, for the underlying probability measure P:

1. E(inf{t ∈ N | Xt ∈ E}) < +∞ and in particular limT→+∞ P(XT ∈ E) = 1.

2. There exists a unique probability distribution πQ on E such that PQπQ = πQ (stationary or
invariant distribution). Furthermore, πQ has full support in E.

3. For all W ∈ E, one has limT→+∞
P(
∑T

t=1X
Q
t = W )

T
= πQ(W ).

In other words, the random network formation process induced by the recommendation
algorithm Q will lead almost surely to the set of efficient networks E. Each agent’s utility will
increase monotonically during this convergence process. Furthermore, once the set of efficient
networks E is reached, the algorithm alternates between networks configurations in E, and the
frequency of occurrence of a network configuration W is given by the invariant distribution πQ,
which is determined by the characteristics of the recommendation algorithm Q.
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2.3 Structure of the class of efficient networks

The structure of the class of efficient networks depends on the preferences of agents and their
linkage capacity. If |Ei| = di, e.g., if the preference ordering of i is strict, the set of efficient con-
nections for i is uniquely determined, and there exists a unique efficient network. In this setting,
all recommendation algorithms are essentially equivalent and the analysis of their asymptotic
properties is not relevant.

The situation of interest for us is rather when there are multiple efficient networks, i.e., where
|Ei| > di for at least some i. In this setting, the set of acceptable objects/links can be partitioned
between objects at and above minimal utility, respectively, i.e., Ci := {j ∈M | ui(j) = minEi ui}
and Ei \Ci = {j ∈M | ui(j) > minEi ui}. On the one hand, as underlined in Example 1 below,
links to objects in Ei \Ci are “undisputed”: they are present in every efficient network and their
prevalence is thus independent of the recommendation algorithm. On the other hand, links inCi
are the actual object of choice influenced by the recommendation algorithm. If |Ei| > di, all the
links in Ci cannot simultaneously be present in an efficient network and the recommendation
algorithm will determine their relative frequency of occurrence. Accordingly, the set of efficient
networks can be described in terms of the sets Ci as follows.

E = {W ∈W0 : ∀i ∈ N,Mi(W ) ⊆ (Ei \ Ci) ∪K,K ⊆ Ci, |Mi(W )| = di}.

Example 1. Let us consider a network with 10 agents, and suppose that agent 1 can have 5
followees (d1 = 5). The utilities for agent 1 are given below:

u1(2) = u1(3) = 10, u1(4) = u1(5) = 9, u1(6) = u1(7) = u1(8) = 8, u1(9) = u1(10) = 7.

Then E1 = {2, 3, 4, 5, 6, 7, 8}. Observe that anyway links (1, 2), (1, 3), (1, 4), (1, 5) will be formed,
but then for the 5th link there is a choice between agents 6, 7 and 8, who have the same utility.
Therefore, C1 = {6, 7, 8} and agents 9 and 10 will never be chosen. Remark that as agents 2,
3, 4 and 5 are chosen anyway, the value of their utility is not important for our analysis and can
be assumed to be equal.

Lemma 1 tells us that E is the unique recurrent class of the Markov chain, which is acyclic.
Let us focus on this class and restrict the transition matrix PQ to E, studying its essential prop-
erties. They are summarized in the following proposition.

Proposition 2. The unique recurrent class E has the following properties:

1. The total number of efficient networks is

|E| =
∏
i∈N

(
|Ci|

di − |Ei|+ |Ci|

)
. (10)

2. Let W ∈ E and consider the transition from W to W + Vi,j − Vi,k ∈ E. It has probability:

PQ(W,W + Vi,j − Vi,k) =
Q(W, (i, j))

|Ci ∩Mi(W )|
. (11)

3. In (11), the denominator |Ci ∩Mi(W )| does not depend on W .

In the following, our key concern is the selection properties of recommendation algorithms
among efficient networks. Undisputed links are mostly irrelevant in this respect. In order to
focus our analysis on actual choice situations, we shall consider in the following a stylized
setting described by the following assumption3.

3The results in subsection 4 are nevertheless valid without Assumption B
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Assumption B. The utility functions ui are binary with values in {−1, 1} and for all i ∈ N, one
has |{j ∈M | ui(j) = 1}| ≥ di.

Under Assumption B, the set of objects is partitioned in a binary manner between satisfac-
tory ones (ui(j) = 1) and non-satisfactory ones (ui(j) = −1). Consequently, one has for all
i ∈ N, Ei = {j ∈ M | ui(j) = 1} and Ci = Ei. Hence, there are no undisputed links and
recommendation algorithms fully control the formation of the network. It thus seems a natural
framework to investigate the properties of these algorithms.

3 Measuring efficiency of recommendation algorithms

Following Proposition 1, any recommendation algorithm satisfying Assumption A will eventually
converge towards the set of efficient networks. From this perspective, any recommendation al-
gorithm is “efficient”. However, for impatient users, the waiting time before receiving suitable
recommendations ought to be a key determinant of choice. Hence, in a setting of competition
between online platforms [Zhang and Sarvary, 2011, Gelper et al., 2021], the speed at which the
recommendation algorithm provides efficient recommendation is likely to be a key determinant
of performance and comparative advantage. In our model, the speed at which an algorithm
Q provides efficient recommendation can be measured at the system’s level via the expected
time required to reach the recurrent class, i.e., the set of efficient networks. Indeed, this mea-
sures the expected time before the algorithm, or equivalently the platform, is able to provide
acceptable recommendations to all its users.

In the following, we characterize the expected hitting time under the binary utility assumption
(Assumption B). In this setting, the network formation process is fully controlled by the interplay
between the recommendation algorithm and individual preferences. We further consider that
the initial network is empty, which is a natural benchmark to ensure comparability between
recommendation algorithm and preference profiles.

Assumption C. The initial network is empty, i.e., P(W (0) = ∅) = 1.

In this setting, the expected hitting time is formally defined as

TQ,u = E(inf{t ∈ N |W (t) ∈ E}) (12)

where W (t) is the state at time t of the Markov chain with transition matrix PQ, and E is the
expectation for the underlying probability measure. It is important to note that E depends on
the utility profile u = (u1, . . . , un), hence the superscript u in the expected hitting time.

One can determine TQ,u as follows. Under Assumption B, only acceptable links will be
formed. More precisely, the trajectories of a Markov chain with transition matrix PQ can be
described by the sequence of links (`t := (it, jt)))t∈N ∈ (L ∪ {∅})N that gets formed, with the
convention that `t = ∅ indicates that no link gets formed at step t. Under assumption B, non-
acceptable links have negative utility and are never formed (in other words, one has `t = ∅
whenever a non-acceptable link is proposed). A trajectory reaches the set of efficient networks
when each agent i has formed di satisfactory links. Accordingly, let us define a minimal hitting
path as a sequence of acceptable links of minimal length leading to an efficient network, namely:

Definition 2. A minimal hitting path is a sequence of links ` = (`1, . . . , `s) = ((i1, j1), . . . , (is, js)) ∈
Ls such that:

1. For each σ ∈ {1, · · · , s}, jσ ∈ Eiσ .
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2. For each i ∈ N, |{`σ = (iσ, jσ) ∈ ` | jσ ∈ Eiσ}| ≥ di.

3. For any subpath `′ of `, there exists i ∈ N such that |{`σ = (iσ, jσ) ∈ `′ | jσ ∈ Eiσ}| < di.
Furthermore, we shall say that a trajectory λ = (λt)t∈N follows a minimal hitting path ` if ` is the
sequence of links in (λt)t∈N leading to E, i.e., `s is exactly the sth acceptable link in λ. Finally,
we shall denote by Vσ(`) (or Vσ in absence of ambiguity), the network formed by the successive
formation of the links `1 to `σ (noting that if an agent i is involved in more than di links, only the
last di links are part of Vσ).
We shall denote by M(u) the set of minimal hitting paths, for a given preference profile u.
As emphasized above, a minimal hitting path is a sequence of satisfactory links of minimal
length leading to the set of efficient networks E. Conversely, any trajectory of the Markov chain
leading to E must follow a minimal hitting path. Building on the ergodic properties put forward in
Proposition 1, one can then partition the trajectories of the Markov chain in terms of the minimal
path they follow to reach the set of efficient networks and accordingly compute the expected
hitting time as the sum of hitting times conditional on the minimal path followed. Namely, one
has:
Lemma 2. The expected hitting time to E associated to a recommendation algorithm Q and a
preference profile u is given by:

TQ,u =
∑

`∈M(u)

PQ` T
Q
`

where PQ` is the probability that the Markov chain follows the minimal hitting path ` and TQ` is
the expected time for hitting E, conditional on the Markov chain following the minimal hitting
path `.

The probability of a minimal hitting path and the associated conditional expected hitting time
can then be computed as follows.
Lemma 3. One has:

PQ` =
Q(∅, `1)
Q(∅, La)

× Q(V1, `2)

Q(V1, La \ V1)
× · · · × Q(Vs−1, `s)

Q(Vs−1, La \ Vs−1)

TQ` =
1

[Q(∅, La)]2
+

1

[Q(V1, La \ V1)]2
+ · · ·+ 1

[Q(Vs−1, La \ Vs−1)]2
,

where Q(W,L′) is the probability that Algorithm Q recommends a link in L′ when in state W .
Lemma 3 highlights the determinants of the hitting time through a given minimal path. The

probability that the path is followed depends on the rate at which the algorithm recommends
the corresponding links, relatively to the rate at which it recommends acceptable links, i.e., how
prominent for the algorithm the links constituting the paths are, as compared to the broader set
of acceptable links. The conditional hitting time depends on the probability that acceptable links
are recommended along the path. More specifically, the conditional waiting time is inversely
proportional to the square of this probability.

Finally, the expected hitting time is obtained by summing over the set of minimal paths, i.e.,
over the paths that the algorithm can follow to reach an efficient network.
Proposition 3. The expected hitting time to the class of efficient networks E for a recommen-
dation algorithm Q and a preference profile u is given by

TQ,u =
∑

`∈M(u)

(
Q(∅, `1)Q(V1, `2) · · ·Q(Vs−1, `s)

Q(∅, La)Q(V1, La \ V1) · · ·Q(Vs−1, La \ Vs−1)

)
×

(
1

[Q(∅, La)]2
+

1

[Q(V1, La \ V1)]2
+ · · ·+ 1

[Q(Vs−1, La \ Vs−1)]2

)
.
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Proposition 3 highlights that the efficiency of the algorithm, i.e., the expected hitting time,
essentially depends on the ability of the algorithm to identify acceptable links. In turn, the
set of acceptable links is determined by individual preferences. From this perspective, the
recommendation algorithm oughts to explore efficiently the preference profile. To do so, the
ability of the recommendation algorithm might depend on the structure of preferences. We first
highlight this dependency through two examples.

Example 2. Let us first consider a case where for all i ∈ N , di = 1 and the preferences
of each agent are distinct and thus negatively correlated. More precisely, we consider the
preference profile u such that Ci = {π(i)} where π is a permutation of N that leaves no el-
ement invariant ( π(i) 6= i). In this setting, a minimal path is of the form ` := (`1, . . . , `n) =
((i1, π(i1)), . . . , (in, π(in)) where each i ∈ N appears exactly once. By symmetry, each such
minimal path has the same probability provided the recommendation algorithm is anonymous.
Furthermore, one has for each s ∈ {1, . . . , n− 1}:

PA(Vs−1, La \ Vs−1) ≤
1

|La \ Vs−1|
= U(Vs−1, La \ Vs−1). (13)

Indeed, links towards objects for which there does not exist a link in Vs−1 are less likely to be
recommended by PA(Vs−1, ·) because they are of degree zero. However these are the only
remaining acceptable links given the structure of preferences. Following Equation (3), one then
has for each ` ∈M(u), TPA

` > TU
` and thus

TPA,u > TU,u. (14)

Hence, the uniform recommendation algorithm is more performant than the preferential attach-
ment algorithm for the uncorrelated preference profile u. One can further remark that, in this
setting, for a generalized preferential attachment algorithm PAf , the faster f would increase,
the worst would be the performance of the algorithm. On the contrary, a generalized preferen-
tial attachment algorithm PAf based on a decreasing function of the degree would outperform
uniform attachment.

Example 3. Let us then consider a case where for all i ∈ N, di = 1 and agents have perfectly
(positively) correlated preferences. More precisely, we consider the preference profile u such
that for all i ∈ N , Ci = {1} (where 1 is an arbitrarily chosen element inM ). In this setting, the set
of minimal paths is given by the possible permutations of the links {(i, 1) | i ∈ N}. By symmetry,
each such minimal path has the same probability provided the recommendation algorithm is
anonymous. The relative performance of algorithms is then inverse to that in Example 2. For
each minimal path ` = (`1, . . . , `s), one clearly has for each subpath (`1, . . . , `r) of `

PA(Vr−1, La \ Vr−1) ≥
1

|La \ Vr−1|
= U(Vr−1, La \ Vr−1). (15)

Indeed, links towards 1 are more likely to be recommended by PA(Vr−1, ·) than by the uniform
recommendation algorithm because 1 is the only object with positive degree in Vr−1. These are
the only acceptable links given the structure of preferences.

Following Equation (3), one then has for each ` ∈M(u), TPA
` < TU

` and thus

TPA,u < TU,u. (16)

Hence, the uniform recommendation algorithm is less performant than the preferential attach-
ment algorithm for the correlated preference profile u. One can further remark that, in this
setting, for a generalized preferential attachment algorithm PAf , the faster f would increase,
the best would be the performance of the algorithm.
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Overall, Examples 2 3 highlight that the relative performance of recommendation algorithms
depends on the structure of preferences. “Hierarchical” algorithms, such as preferential attach-
ment perform well when preferences are correlated but uniform, “egalitarian”, algorithms might
perform better when preferences are highly heterogeneous. In order to investigate more pre-
cisely the relationship between the structure of preferences and the efficiency of recommen-
dation algorithms, we run a series of numerical simulations in which we investigate the perfor-
mance of different algorithms for varying level of correlation between individual preferences.
Namely, we generate samples of random preference profiles with varying level of correlation
(following the procedure described in Appendix 6.5.8) and then simulate the network formation
process for the uniform recommendation algorithm, the 2 hops algorithm, and the preferential
attachment algorithm for which we vary the strength of the degree-based recommendation by
considering variants PAf with f of the form f(x) = xα (α = 1 corresponds to the standard PA
algorithm and α = 0 to the uniform recommendation case).

We report in Figure 2 the results of these numerical experiments for a range of parameter
configurations. These numerical results generalize the conclusions drawn from Examples 2
and 3. For uncorrelated preference profiles, uniform recommendation algorithm performs sys-
tematically better than preferential attachment algorithm and the performance differential in-
creases with the strength of the preferential attachment. As the level of preference correlation
increases, the performance of preferential attachment algorithms gradually improves. The al-
gorithms with weak preferential attachment (low α) are the most efficient for weakly correlated
profiles and algorithms with strong preferential attachment (high α) progressively outperform
them as the level of correlation increases. For fully correlated preference profiles, the standard
preferential attachment algorithm (α = 1) becomes the best performing algorithm and relative
performance is determined by the strength of preferential attachment. One also observes a tem-
porary decrease of performance for the preferential attachment algorithm for weakly correlated
preference profile. These feature are robust to parameter change. They highlight clearly the
relation between the structure of preferences and the performance of algorithms. More “hierar-
chical” algorithms of the preferential attachment type perform better for correlated/hierarchical
preference profiles where some objects dominate the preference orderings. More “egalitarian”
algorithms perform better for diverse/heterogeneous preference profiles.

Additional series of numerical experiments focusing on variants of the 2-hops algorithm fur-
ther strengthen this conclusion about the relationships between performance of hierarchical
recommendation algorithm and correlation of preferences. Namely, we have considered rec-
ommendation algorithms of the form n-hops (with n = 2, 3, 5). As n increases, the determinants
of recommendation shift from local to global properties of the network. Indeed, neglecting the
ε term, the n-hops algorithm recommends agent j to i as a function of the share of walks of
length n leading from i to j. As n increases, the share of walks leading to j increasingly de-
pends on the overall centrality of the agent. Specifically, as n tends towards infinity, the share
of walks leading to j is the eigenvector centrality of j. Hence n-hops algorithms are increas-
ingly hierarchical as they increasingly account for the global centrality features of recommended
agents. The results reported in Figure 3 highlight that as the level of correlation of preferences
increases, the relative performance of the n-hops algorithms improves, i.e., more hierarchical
algorithms perform better for more correlated/hierarchical preference profiles.

4 Invariant distributions of networks

Once the Markov chain reaches the class of efficient networks, the recommendation algorithm
governs the evolution of the network through this recurrent class and hence generates the
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Figure 2: Hitting time to the recurrence class, averaged over 25 simulations, for a range of
(preferential attachment) recommendation algorithms and parameter values: n = 200,m =
200, a = 10 in the upper-left panel, n = 20,m = 20, a = 10 in the upper-right panel, n =
200,m = 400, a = 10 in the lower-left panel, n = 200,m = 200, a = 4 in the lower-right panel

invariant distribution of the Markov chain over efficient networks. This invariant distribution de-
termines in particular the systemic properties of the algorithm in terms of fairness, which we
shall investigate in subsection 5. In this subsection, we provide a characterization of the invari-
ant distribution for the uniform and preferential attachment algorithms. We then put forward an
exact numerical method for the computation of these distributions.

4.1 Characterization of the invariant distribution

Uniform recommendation We first provide a characterization of the invariant distribution for
the uniform recommendation algorithm. In that case, the transition probabilities between two
efficient networks are perfectly symmetric. Accordingly, each efficient network is equally likely
to emerge and the invariant distribution is uniform. Namely, one has:

Proposition 4. Under the uniform recommendation algorithm, the uniform distribution over E
is the only stationary distribution of PU.

18



1 2 3 4 5 6 7 8 9 10 11

correlation of preferences

0

1

2

3

4

5

6

7
c
o

n
v
e

rg
e

n
c
e

 t
im

e
10

4 n=200, m=200, a=10

alpha 0

alpha 1

2 hops

3 hops

5 hops

1 2 3 4 5 6 7 8 9 10 11

correlation of preferences

200

220

240

260

280

300

320

340

360

380

400

c
o
n
v
e

rg
e
n
c
e

 t
im

e

n=20, m=20, a=10

alpha 0

alpha 1

2 hops

3 hops

5 hops

Figure 3: Hitting time to the recurrence class, averaged over 25 simulations, for a range of
(hops) recommendation algorithms and parameter values: n = 200,m = 200, a = 10 in the left
panel, n = 200,m = 200, a = 4 in the right panel

Preferential attachment In the case of preferential attachment recommendation algorithms,
there is a simple relationship between changes in the degree distribution and the transition
probabilities between networks, which implies that the Markov chain PPA is time-reversible and
that the stationary distribution can be characterized simply by a detailed balanced condition.

Specifically, let us recall that a Markov chain with transition matrix P and set of states S is
time-reversible if it has the same transition probabilities when running backwards in time, i.e.,
it satisfies the detailed balance equations (see, e.g., Levin et al. [2009]):

πipij = πjpji (si, sj ∈ S). (17)

Furthermore, an equivalent condition for time-reversibility is that the chain satisfies the Kol-
mogorov criterion [see Kelly, 2011], i.e., for any finite sequence of distinct states sj0 , . . . , sjk ,
one has

pj0j1 · · · pjk−1jkpjkj0 = pj0jkpjkjk−1
· · · pj1j0 . (18)

In the case of preferential attachment, any such loop contains similar degree increments and
decrements (and thus similar transition probabilities) in both temporal directions. This allows to
prove that the Markov chain is time-reversible:
Proposition 5. Let f be a function defining a general preferential attachment algorithm PAf .

1. The Markov chain PPAf is reversible, and its stationary distribution πPAf satisfies:

f(d−j (W ))πPAf (W )
∑
h∈M

f(d−h (W + Vi,j − Vi,k)) =

f(d−k (W + Vi,j − Vi,k))πPAf (W + Vi,j − Vi,k)
∑
h∈M

f(d−h (W )). (19)

2. If f(d) = 1 + d (classical PA), the expression simplifies to

f(d−j (W ))πPAf (W ) = f(d−k (W + Vi,j − Vi,k))πPAf (W + Vi,j − Vi,k).

As examplified in subsection 4.3 below, the reversibility of PPAf also allows to derive bounds
on the eigenvalues and on the convergence time for the Markov chain [Diaconis and Stroock,
1991].
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4.2 Computation of the invariant distribution

For the preferential attachment algorithm, and more generally for recommendation algorithms
inducing a reversible Markov chain, the detailed balance condition (Equation (19)) can be used
to compute step by step the stationary distribution provided one can find a path that passes
through all the efficient networks. This latter condition amounts to ensure that the adjacency
graph associated to the transition matrix is Hamiltonian. More precisely, the adjacency graph
GQ associated to the transition matrix PQ (restricted to E) is the directed graph whose set of
nodes is E and such that there is an arc from state W to state W ′ if and only if PQ(W,W ′) >
0. This graph is Hamiltonian if it admits a Hamiltonian path, i.e., a path passing through all
nodes without repetition. It turns out that every recommendation algorithm, and preferential
attachment in particular, induces the Hamiltonian property on the adjacency graph.

Proposition 6. For any recommendation algorithm, the adjacency graph GQ of the transition
matrix PQ is Hamiltonian.

One can then compute the stationary distribution of networks for the preferential attachment
algorithm, and more generally for recommendation algorithms inducing a reversible Markov
chain, as follows.

1. Consider the adjacency graph GPAf of the transition matrix PPAf . We have proved in
Proposition 6 that GPAf is Hamiltonian, i.e., there exists a path passing through all nodes
without repetition.

2. Let us thus consider a Hamiltonian path for GPAf and denote the sequence of states
(networks) in this path by W1, . . . ,Wq, where q is the number of efficient networks.

3. By construction, between Wi and Wi+1, only one link has been deleted and a new link
has been added, for i = 1, . . . , q − 1. Therefore, πPAf (Wi+1) can be expressed in terms
of πPAf (Wi) through (19).

4. Letting π′PAf (W1) = 1, we can compute π′PAf (W2), . . . , π
′
PAf

(Wq) in this order.

5. The stationary distribution πPAf is then obtained by normalization:

πPAf (Wi) =
π′PAf (Wi)∑q
j=1 π

′
PAf

(Wj)
.

4.3 A numerical example

We present in this subsection a detailed example of network with N = M , computing the
transition matrices and find numerically the stationary distributions. Another similar and more
complex example is shown in Appendix 6.6.2.

Example 4. We consider a setting where M = N = 5. Let us take 5 agents and assume that
the following links of the network are those with maximal utility (i.e., they remain fixed): (1,2),
(2,3), (3,5), (4,3), (5,1) Suppose that the sets Ci of possible choices are:

C1 = {3, 4}, C2 = {1, 4}, C3 = {1, 2}, C4 = {2, 5}, C5 = {2, 3}

and the out-degree of each agent is 2. Then, each agent has two choices. We suppose that the
initial stateW1 is the one where the 1st choice is taken for each agent. There are 25 = 32 states.
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The states (together with the way they are coded) and the transition matrix for the preferential
attachment are given in Appendix 6.6.1.

There are 5 possible transitions from each state (each agent has one choice). Observe that
the diagonal has strong values (i.e., the process is slow to converge). The stationary distribution
is given in Figure 4. There are 4 states more probable than the others: states 5, 17, 21 and 25.

Figure 4: Stationary distribution Ex. 4 with PA

The maximum between the modulus of 2nd largest eigenvalue and modulus of smallest
value is 0.956459.

The transition matrix for the modified 2-hops (follower of follower) with ε = 0.1 is given in
Appendix 6.6.1. The diagonal is less strong than for PA. The stationary distribution is given in
Figure 5. There are several states more probable than the others, which are the states 1, 5, 9,

Figure 5: Stationary distribution Ex. 4 with FF

13, 17, 21, 25 and 29 (they include those obtained with PA).
The maximum between the modulus of 2nd largest eigenvalue and modulus of smallest

value is 0.9713848, indicating a process slightly slower than preferential attachment.
It is possible to explain why the above states are more probable than the others. Looking at

the graph of fixed choices, one can see that the in-degree of agent 4 is 0. Now, agents 1 and
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2 have as 2nd choice the possibility to create a link to 4. In the PA model as well as in the FF
model, these agents have no incentive to choose 4, therefore they have a strong tendency to
choose their first choice. This choice is coded as 0 in the table of states (see Appendix 6.6.1).
Therefore, states where agents 1 and 2 take value 0 are more probable. These are exactly the
states 1 + 4k, k = 0, 1, 2, . . . , 7. In addition, for PA, agent 3 is the most attractive since it has the
maximum in-degree (equal to 2). Agent 3 can be chosen by agent 5 as 2nd choice. Therefore,
states where agent 5 takes the value 1 are more probable among the previous ones. These
are states 17, 21, 25, 29 (see table of states in Appendix 6.6.1).

5 Measuring fairness of recommendation algorithms

In this subsection, we focus on the measure of algorithmic fairness from the point of view of
objects or followees, i.e., we ask whether the algorithm provides fair opportunities to be followed.

5.1 Micro-founded measures of unfairness

From the point of view of an individual object/followee, the number of links received is a natural
measure of success. In this respect an object/followee j can “claim” a link from each agent
i for which it is acceptable, i.e., such that j ∈ Ei. However, there are ei := |Ei| objects that
have a similar claim whereas agent i can only form di links. One can consider the situation
as a bankruptcy problem where an estate of di links is to be divided among |Ei| objects, each
having a claim of 1 on the estate (see Aumann and Maschler [1985]). In this simple setting, it is
straightforward that any solution rule for the bankruptcy game (e.g., Shapley value, nucleolus,
proportional rule) will yield the same outcome, namely that each object shall receive di/|Ei| from
the estate. Summing over agents, this suggests that the benchmark/fair allocation of links
across agents shall be such that each object/followee j receives (in expectation) a total of bj
links where

bj :=
∑
{i|j∈Ei}

di
|Ei|

. (20)

If (bj)j∈M is a fair allocation of incoming links over objects, it appears natural to measure
the unfairness of a recommendation algorithm by the extent to which the induced distribution of
in-degrees for objects at convergence entails deviation from this benchmark allocation. More
precisely, let us denote by eQ the expected allocation of in-degrees associated to the stationary
network distribution induced by the recommendation algorithm Q. That is, for all j ∈M :

eQj =
∑
W∈E

πQ(W )
∑
i∈N

Wi,j . (21)

We shall define the unfairness of the recommendation algorithm Q as the Kullback-Leibler di-
vergence4 between its expected allocation of in-degrees and the fair benchmark. Namely, the
unfairness U(Q) of the recommendation algorithm Q is given by:

U(Q) =
∑
j∈M

eQj log
eQj
bj
. (22)

Hence, the benchmark allocation has an unfairness of zero, i.e., it is completely fair, and un-
fairness increases with the distance to the benchmark.

4This is a standard choice when comparing distributions. Yet our results are qualitatively similar for all standard
metrics on RM .
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Remark 3. A notable particular case is that where each agent has the same linkage capacity
and number of acceptable links, i.e., if di = dj = d and |Ei| = |Ej | for all i, j. One then has
bi = bj = b for all i, j, and the unfairness of the algorithm Q is given by:

U(Q) =
∑
j∈M

eQj log(eQj )− nd log(b) (23)

where nd it the total number of links. Hence, the unfairness of the expected allocation of in-
degrees associated to an algorithm is equal, up to a constant, to the opposite of its Shannon
entropy.

5.2 Entropy as a measure of fairness

In relation to the results of the preceding subsection, a key remark is that the uniform recom-
mendation algorithm always leads to a perfectly fair distribution. Indeed, following Proposition
4, the uniform recommendation algorithm induces the uniform distribution over the set of effi-
cient networks E. In this setting, the expected number of links received by object j is exactly
bj . Indeed, under Assumption B, it is straightforward to remark that efficient networks are those
such that each agent i has exactly di links towards objects in Ei. Accordingly, drawing a net-
work according to the uniform distribution amounts to draw independently for each i, di links in
Ei. Each acceptable object j thus has a probability di/|Ei| to be linked to agent i or equivalently
receives di/|Ei| expected links from agent i. By independence, the total expected number of
links towards object j is the sum of expected links received from each agent. That is, one has:

Remark 4. If assumption B holds, then the expected number of links to object j for the uniform

distribution on E is given by
∑
{i|j∈Ei}

di
ei

= bj .

Hence, the uniform distribution on E yields the fair distribution of links. In view of Propo-
sition 4, an immediate corollary of this remark is that the uniform recommendation algorithm
systematically leads to the fair distribution of links.

Proposition 7. Under Assumption B, one has eUj = bj for all j ∈M , and accordingly U(U) = 0.

Another consequence of Remark 4 is that unfairness can also be measured at the level of
distribution over networks (rather than through the expectation of in-degrees). Indeed, given
that the uniform distribution over networks is perfectly fair, the fairness of a distribution can be
measured by the divergence with respect to the uniform distribution, that is through the entropy.
In other words, we consider as a macro-level measure of fairness the entropy

F(Q) = −
∑
W∈E

πQ(W ) log(πQ(W )). (24)

Hence, the measure of unfairness U and the measure of fairness F are consistent in the
sense that the uniform algorithm yields maximal fairness and minimal unfairness. The (un)-
fairness of other algorithms may differ because one measures the divergence to the uniform
benchmark in terms of the expected allocation of in-degrees whereas the other measures this
divergence directly in terms of the invariant distribution over networks.

”
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5.3 Numerical analysis of fairness

In order to investigate the fairness of an extended range of algorithms, we repeat the numerical
experiments of subsection 3 and simulate the evolution of the Markov chain over 500000 periods
(convergence almost always occurs within the first 100000 periods) in order to approximate the
invariant distribution and the fairness of the corresponding recommendation algorithms. The
results are reported in Figures 6 and 7. The results for preferential attachment and n-hops
type of algorithms are qualitatively similar. The level of unfairness first increases with the level
of correlation of preferences, reaches a maximum, and then decreases as the preferences
become fully correlated. In quantitative terms, the level of unfairness is higher for the more
hierarchical algorithms, i.e., preferential attachment with larger α parameter and n-hops algo-
rithms with larger n. These results can be explained as follows. For low levels of correlation,
the preferential attachment mechanism does not really “bite” because no object can sustain a
high in-degree. For high level of correlation, the set of efficient networks is small and rather
homogeneous as most agents seek to form links with the few “star” objects (in the limit of per-
fect correlation, there is even a single efficient network). Accordingly, the divergence between
the uniform distribution and distributions induced by hierarchical recommendation algorithms is
limited. Unfairness reaches a maximum for intermediary level of correlation because this is a
domain where (i) central nodes can emerge and be identified by hierarchical algorithms, (ii) the
set of efficient networks is sufficiently large and heterogeneous for divergence with the uniform
benchmark to materialize.

5.4 Fairness-efficiency trade-off

The previous results highlight the presence of a trade-off between efficiency and fairness (in
particular for intermediate level of preference correlation), as the recommendation algorithms
that ensure fast convergence to efficient networks are also those that lead to high level of un-
fairness. However, our analysis also hints at a simple solution to mitigate this trade-off. It
suffices to update the recommendation algorithm once the class of efficient network is reached.
More precisely, the designer of an online platform can adapt the recommendation algorithm to
the different phases of the network formation process. Hierarchical algorithms can be used in
the early phase of the process to reach rapidly the set of efficient networks and ensure user
satisfaction and adoption. Once the user base is established, more uniform recommendation
algorithms can be used to further explore the set of potential networks and guarantee fairness
without paying an efficiency cost.

This shift towards a uniform distribution can also be achieved through the modification of
the recommendation algorithm via the Metropolis (Monte-Carlo Markov Chain, MCMC) process.
Indeed, it can be used to deviate the algorithm towards the uniform distribution (see, e.g., Levin
et al. [2009]). More precisely, suppose Ψ = [ψij ] is an arbitrary transition matrix, and π is an
arbitrary distribution (e.g. the uniform distribution over efficient networks in our context). Then
the Metropolis chain is defined by

pij =

ψij
(

1 ∧ πjψji
πiψij

)
, if j 6= i

1−
∑

k:k 6=i ψik

(
1 ∧ πkψki

πiψik

)
, if j = i,

and has stationary distribution π. The approach is to reject with some probability transitions
given by Ψ. Hence, P converges more slowly than Ψ, but the Metropolis process is the fastest
among all processes based on this principle.
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Figure 6: Unfairness (divergence with respect to the benchmark distribution), averaged over 25
simulations, for a range of (preferential attachment) recommendation algorithms and parameter
values: n = 200,m = 200, a = 10 in the upper-left panel, n = 20,m = 20, a = 10 in the
upper-right panel, n = 200,m = 200, a = 10 in the lower-left panel, n = 200,m = 200, a = 4
in the lower-right panel. Stationary distributions are approximated by the empirical frequency
observed between hitting time of the recurrence class and T = 500000.
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Figure 7: Unfairness (divergence with respect to the benchmark distribution), averaged over
25 simulations, for a range of (hops) recommendation algorithms and parameter values: n =
200,m = 200, a = 10 in the left panel, n = 200,m = 200, a = 4 in the right panel. Stationary
distributions are approximated by the empirical frequency observed between hitting time of the
recurrence class and T = 500000.

Example 5. We have applied the Metropolis process of Example 4, to the preferential attach-
ment and the 2-hops algorithms, which yields indeed a uniform distribution. For preferential
attachment, the maximum between the modulus of 2nd largest eigenvalue and modulus of
smallest value is 0.967487, slightly above the original value (0.956459). Similarly, for 2-hops,
the maximum between the modulus of 2nd largest eigenvalue and modulus of smallest value
is 0.984847, slightly above the original one (0.9713848).

6 Discussion and Conclusion

6.1 Summary of results

This report presents the model of network formation governed by recommendation algorithms
developed in task 2.4. The model is built as a finite Markov chain in which the algorithm sequen-
tially proposes links to agents who decide which links they form on the basis of a preference
profile over target objets/followees. This simple structure allows for both mathematical and
computational analysis of the model. We analyze the convergence properties and the structure
of the stationary distribution of the chain that we relate, respectively, to the efficiency and to the
fairness of the recommendation algorithm.

We first show that the utility-based nature of the link acceptance process implies that the
system converges to an absorbing class of efficient networks, provided the recommendation
algorithm has a sufficiently large support. In this sense, any recommendation algorithm is
“efficient”. However, for impatient users, the waiting time before receiving suitable recommen-
dations is a key element in comparing platforms and recommendation algorithms. Accordingly,
we define the efficiency of an algorithm as its expected hitting time to the absorbing class of
efficient networks. We provide an analytical formula for this hitting time that underlines that the
performance of a recommendation algorithm is tightly linked to the structure of the preference
profiles. When preferences are uncorrelated, uniform recommendation algorithms perform as
well (or even better) than hierarchical algorithms whose recommendations favour more central
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nodes, e.g., in terms of degree for preferential attachment. When preferences are correlated,
hierarchical algorithms perform better as they rapidly identify the objects/followees collectively
preferred by users.

We then provide an analytical characterization of the asymptotic distribution of (efficient)
networks for uniform and preferential recommendation algorithms. We further provide an exact
algorithm for the computation of this distribution for the class of recommendation algorithms
that induce reversible Markov chains. The invariant distribution characterizes the long-term be-
havior of the recommendation algorithm as it determines the set of networks generated and
their frequency of occurrence. We thus measure the fairness of a recommendation algorithm in
function of the associated invariant distribution. Specifically, we define the fairness of a recom-
mendation algorithm as its divergence from a benchmark where each object/followee receives
a number of links proportional to the number of agents for whom it is a priori desirable. This
approach provides micro-foundations for using the entropy of the invariant distribution as a
measure of fairness for a recommendation algorithm. The uniform recommendation algorithm
is always perfectly fair. The fairness of more hierarchical algorithms, such as preferential at-
tachment and n-hops, depends on the structure of preferences. They are relatively fair when
the correlation between preferences is very high or very low but can be very unfair for interme-
diate level of correlation as the recommendation algorithms focus on central nodes whereas a
number of alternative network configurations would be equally desirable.

6.2 Evolution of recommendation algorithms

Our results put forward the existence of a trade-off between fairness and efficiency for rec-
ommendation algorithms. However, our analysis also hints at a simple solution to mitigate
this trade-off. The designer of an online platform can adapt the recommendation algorithm to
the different phases of the network formation process. Hierarchical algorithms can be used in
the early phase of the process to reach rapidly the set of efficient networks and ensure user
satisfaction and adoption. Once the user base is established, more uniform recommendation
algorithms can be used to further explore the set of potential networks and guarantee fairness
without paying an efficiency cost. There are evidences of platform behavior being aligned with
our conclusions in the sense that recommendation algorithms have been updated to foster a
more extensive exploration of the network and the recommendation of more diverse content.
A major wave of such algorithmic updates has occurred in 2024 concerning notably Instagram
and Snapchat (see Figure 8)

It appears that these algorithmic updates stem from both competitive and regulatory pres-
sure. In our setting, the impact of competition on algorithmic fairness and openness seems
ambiguous. On the one hand, competition implies a strong efficiency requirement for platforms
that must thus identify rapidly and recommend broadly the content that is likely to be appreciated
by the largest number of possible users. This reduces diversity in recommendation and has a
negative impact on fairness. On the other hand, competition implies a need for diversification
that can foster the adoption of more exploratory and fair algorithms.

6.3 Impacts on socio-economic dynamics

Beyond fairness “per se”, recommendation algorithms can also have substantial impacts on
socio-economic dynamics. First, they induce changes on the structure of social networks.
Indeed, link-recommendation algorithms lead to more hierarchical social structures than de-
centralized/offline social network formation process based on local interactions, which shall be
comparable to recommendation algorithms with low-levels of preferential attachment or n-hops
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Figure 8: Illustration, through two recent media pieces, of the redesign of recommendation
algorithms to foster more extensive exploration of social networks focusing on the case of
Snapchat and Instagram. See respectively https://www.bloomberg.com/news/articles/2024-
09-17/snap-updates-video-feed-in-competition-with-meta-tiktok?embedded-checkout=true
and https://www.techtimes.com/articles/304135/20240430/instagram-algorithm-will-focus-
more-original-content-straying-away-reposted.htm

with small n. This implies more uneven distribution of centralities in social networks and thus
increased inequality in terms of access to information, social capital, or symbolic power. These
structural inequalities can have substantial impacts on the dynamics processes unfolding on
social networks.

First, in the context of structural economic change, networks play a crucial role in the diffu-
sion of new technologies Robertson et al. [1996], Deroıan [2002], Hanaki et al. [2010], Vega and
Mandel [2018]. Hence, it is key for the success of the twin transition to have network structures
aligned for the rapid and efficient diffusion of technological innovations. Hierarchical recom-
mendation algorithms might however lead to inefficiencies in this respect. Indeed, innovative
firms, jobs, skills, or people might have their access to information and/or their social (media)
visibility reduced because backward-looking recommendation algorithms will, by default, dis-
criminate against newly created/innovative entities. This can slow down matching processes
on the labor and funding markets for emerging industries and sectors. This can also hamper
the diffusion of new products, unless they are adopted by already influential users.

More specifically, in the context of opinion formation, it is well-known that network centrality,
in particular eigenvector centrality, is a key determinant of influence on opinion dynamics [see
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e.g. DeGroot, 1974, Deffuant et al., 2001, Hegselmann and Krause, 2002, Golub and Jackson,
2010]. Accordingly, hierachical recommendation algorithms will generate highly skewed distri-
butions of social influence where a few actors can have extremely large and rapid impacts on
a large share of the population as exemplified by the role of social-media “influencers” in the
2024 Romanian presidential election campaign.

Additionally, hierarchical recommendation algorithms will lead to a very heterogeneous den-
sity of links with a high concentration of links around high-centrality nodes and very sparse links
in the rest of the networks . Such unbalanced distribution of links make social networks highly
vulnerable to polarization [see e.g. Grabisch et al., 2023]. Indeed, weak links between mod-
erate/central agents can hardly resist to centrifuge forces in the presence of highly connected
nodes with extreme/polar opinions. In such situations, social network can disconnect, leading
to further amplification of polarization mechanisms. The polarization of opinions can be a ma-
jor obstacle to twin transitions as exemplified by the case of the French yellow vests [see e.g.
Douenne and Fabre, 2022].

6.4 Policy recommendations

Overall, it appears that some form of monitoring and/or regulation of recommendation algo-
rithms is warranted. A first step in this direction is the requirement to make algorithms available
to regulators (and ideally to users as well) in order to evaluate their performance in terms of
fairness and their potential systemic bias. Some online platforms allow users to select the rec-
ommendation algorithms they use but substantial opacity remain as underlined by the recent
request to some online platforms by the European Commission under the Digital Services Act
(see footnote 1 above) seems well aligned with these objectives. A second step would be the
actual regulation of the algorithms. Our results highlight that, in theory, an automatic form of reg-
ulation could be possible, e.g. by including desired algorithmic features through the Metropolis
algorithm. This is however likely to raise major efficiency concerns. A more appropriate route
could be to impose to recommendation algorithms specifications that express fairness require-
ments. This approach would also avoid the perils of uniformization by regulation. Indeed, our
results also hint that no recommendation algorithms is perfect for all situations. Both the effi-
ciency and the fairness of an algorithm in fact depend on the structure of preferences of users.
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Appendix

6.5 Proofs

6.5.1 Proof of Lemma 1

Given a link ` := (i, j) ∈ N ×M , we denote by V` the matrix for which (i, j) is the only non-zero
coefficient. With a slight abuse of notation, we also denote by V∅ the matrix 0 in RN×M and let
L′ := L ∪ {∅}.

1. Let us first remark that following Definition 1, one has:

P(Q,d)(W,W
′) ≥ 0⇒ ∀i ∈ N, Ui(W ′) ≥ Ui(W ).

This implies in particular that a network W ′ is accessible from W only if
∑

i∈N Ui(W
′) ≥∑

i∈N Ui(W ).
2. Let us first show that any network W 6∈ E is not recurrent. Indeed, if W 6∈ E, there exists

` ∈ La and `′ ∈ L′ such that Ui(W + V` − V`′) > Ui(W ). Let W ′ = W + V` − V`′ . According to
Assumption A, one has Q(W, `) > 0 and thus, following Definition 1, P(Q,d)(W,W

′) > 0 and W ′
is accessible from W . Furthermore, following 1. above, W is not accessible from W ′ because∑

i∈N Ui(W
′) >

∑
i∈N Ui(W ). This implies that W is not recurrent.

3. Let us then show that any network W ∈ E is recurrent. It is straightforward that for any
W ′ in W0, there exists a finite sequence of link addition/deletion (`1, `

′
1), . . . (`S , `

′
S) such that

(i) For all σ = 1, . . . , S, `′σ ∈ La,

(ii) W = W ′ +
∑S

s=1 V`s − V`′s

(iii) For all i ∈ N and all σ = 1, . . . , S :

Ui(W
′ +

σ∑
s=1

V`s − V`′s) ≥ Ui(W
′ +

σ−1∑
s=1

V`s − V`′s).

This implies, following Assumption A that for all s = 1, · · · , S,

P(Q,d)(W
′ +

σ−1∑
s=1

V`s − V`′s ,W
′ +

σ∑
s=1

V`s − V`′s) ≥ 0.

Thus W is accessible from W ′. As this holds for all W ′ ∈ W0 and all W ∈ E, this implies that
all W ∈ E are recurrent and that there is a unique recurrent class.

4. Finally, as for all W ∈ E, one has P(Q,d)(W,W ) > 0, the Markov chain is aperiodic.

6.5.2 Proof of Proposition 2

1. Observe that, given that the current state W is in E, if i is selected by the recommendation
algorithm, there are |Ci \Mi(W )| · |Ci ∩Mi(W )| possible moves (adding a new link and
removing an old one). This yields

∏
i∈N |Ci \Mi(W )| · |Ci ∩Mi(W )| possible moves in

total from W . Therefore the total number of efficient W is

|E| =
∏
i∈N

(
|Ci|

di − |Ei|+ |Ci|

)
.
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2. As we restrict to E, (2) reduces to the second case. The denominator takes into account
the different (considered as equiprobable) choices for deleting a link, which yields the
formula.

3. Ci ∩Mi(W ) is the set of choices for agent i to delete a link. In E, we have |Mi(W )| = di.
Also, Mi(W ) \Ci is the set of indisputable links, which therefore does not depend on W .
We have then

|Ci ∩Mi(W )| = |Mi(W )|︸ ︷︷ ︸
di

−|Mi(W ) \ Ci|,

which proves the claim.

6.5.3 Proof of Lemma 2

Let us denote by T the set of trajectories for the Markov chain with transition matrix PQ and
an initially empty network. The set T can be partitioned between the subset Tnc of trajectories
that do not reach the recurrent class E and the subset of trajectories Tc that reach the recurrent
class. Following Proposition 1, the set Tnc has probability zero. Thus, without loss of generality,
the expected hitting time can be computed conditional on the trajectory being in Tc. Now, by
definition, each trajectory in Tc follows a minimal path. This implies that:

TQ,u =
∑

`∈M(u)

PQ` T
Q
`

where PQ` is the probability that the Markov chain follows the minimal hitting path ` and TQ` is
the expected time for hitting E conditional on the Markov chain following the minimal hitting path
`.

6.5.4 Proof of Lemma 3

Let us consider a minimal hitting path ` = (`1, . . . , `s). Starting from the empty network, we
have:

• Step 1: from ∅ to the network {`1}, with `1 = (i1, j1). The probability that `1 is the first
acceptable link recommended by Q from the empty network is given by

PQ∅,`1 =
∑
t∈N

[1−Q(∅, La)]tQ(∅, `1) =
Q(∅, `1)
Q(∅, La)

where Q(∅, ·) is the probability of recommendation from the empty network. Hence, [1−
Q(∅, La)]tQ(∅, `1) corresponds to the probability of the recommendation of t unsatisfactory
links (in the complement of La) before the recommendation of `1. The second equality
comes from the summation of the geometric series.
Accordingly, conditional on ` being followed, the expected waiting time until `1 is formed
is given by

TQ∅,`1 =
∑
t∈N

(t+ 1)[1−Q(∅, La)]t =
1

[Q(∅, La)]2
.

• Step k: from Vk−1 := {`1, . . . `k−1} to Vk := Vk−1 ∪ {`k}, with `k = (ik, jk). The probability
that `k is the first new acceptable link formed from Vk−1 is given by

PQVk−1,`k
=
∑
t∈N

[1−Q(Vk−1, La \ Vk−1)]tQ(Vk−1, `k) =
Q(Vk−1, `k)

Q(Vk−1, La \ Vk−1)
.
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Accordingly, conditional on ` being followed, the expected waiting time until `k is formed
from Vk−1 is given by

TQVk−1,`k
=
∑
t∈N

(t+ 1)[1−Q(Vk−1, La \ Vk−1)]t =
1

[Q(Vk−1, La \ Vk−1)]2
.

Finally, we obtain

PQ` =
Q(∅, `1)
Q(∅, La)

× Q(V1, `2)

Q(V1, La \ V1)
× · · · × Q(Vs−1, `s)

Q(Vs−1, La \ Vs−1)

TQ` =
1

[Q(∅, La)]2
+

1

[Q(V1, La \ V1)]2
+ · · ·+ 1

[Q(Vs−1, La \ Vs−1)]2
.

6.5.5 Proof of Proposition 4

It suffices to prove that the transition matrix PU is symmetric, i.e., for any two states W,W ′,
PU(W,W ′) = PU(W ′,W ). Let us put W ′ = W + Vi,j − Vi,k. Using (11) and the definition of U,
we get:

PU(W,W + Vi,j − Vi,k) =
1

nm|Ci ∩Mi(W )|

PU(W + Vi,j − Vi,k,W ) =
1

nm|Ci ∩Mi(W + Vi,j − Vi,k)
.

However, by Proposition 2 (3), |Ci ∩Mi(W )| does not depend on W . Therefore, the two ex-
pressions are equal.

6.5.6 Proof of Proposition 5

1. We first prove that the matrix PPAf is reversible. For this, it suffices to show that it satisfies the
Kolmogorov criterion [see Kelly, 2011], i.e., that for every finite sequence of distinct recurrent
networksW := W0, . . . ,WT , one has:

PPAf (W0,W1)PPAf (W1,W2) · · ·PPAf (WT ,W0) = PPAf (W0,WT )PPAf (WT ,WT−1) · · ·PPAf (W1,W0)
(25)

(see (18)). Let us set accordingly −→W := W0, . . . ,WT ,W0 and←−W := W0,WT . . . ,W1,W0.
Consider in −→W the transition from Wt to Wt+1, and suppose that Wt+1 = Wt − Vit,jt + Vit,kt .

Using (11) and (5), the probability of transition is

PPAf (Wt,Wt+1) =
PAf (Wt, (it, kt))

|Cit ∩Mit(Wt)|
=

f(d−kt(Wt))

m
∑

h f(d−h (Wt))|Cit ∩Mit(Wt)|
.

Observe that that term m
∑

h f(d−h (Wt)) depends only on Wt (let us abbreviate it by γ(Wt)),
while the term |Cit ∩Mit(Wt)| depends only on it (let us denote it by κ(it)). Hence, computing
the left hand-side in (25) yields:

LHS =

∏T
t=0 f(d−kt(Wt))∏T
t=0 γ(Wt)κ(it)

.
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Consider now the reverse sequence ←−W. Observe that in the transition Wt+1 to Wt, the link
(it, kt) is deleted, while the link (it, jt) is created. Therefore,

PPAf (Wt+1,Wt) =
PAf (Wt+1, (it, jt))

|Cit ∩Mit(Wt+1)|
=
f(d−jt(Wt+1))

γ(Wt+1)κ(it)
.

Therefore, the right hand-side of (25) reads:

RHS =

∏0
t=T f(d−jt(Wt+1))∏0
t=T γ(Wt+1)κ(it)

with WT+1 := W0. It follows that

LHS

RHS
=

∏T
t=0 f(d−kt(Wt))∏0
t=T f(d−jt(Wt+1)

.

It remains to prove that the above ratio reduces to 1. We will show that each term in the numer-
ator has a corresponding term in the denominator.

Case 1: Transition W0 to W1. We have that W1 = W0 + Vi0,k0 − Vi0,j0 . As the sequence
−→
W returns to W0, there must exist t such that the in-degree of k0 in Wt is d−k0(W0). Denote
by t0 the first such time step, i.e., the in-degree decreases from Wt0−1 to Wt0 . Consequently,
in the reverse sequence ←−W, there is an increment of one unit of the in-degree of k0 in the
transition Wt0 → Wt0−1. Therefore, d−k0(W0) = d−k0(Wt0), and the term f(d−k0(W0)) in RHS
cancels f(d−k0(Wt)) in LHS.

Case 2: Transition from Wt to Wt+1, t > 0. The in-degree of kt increases by 1 during this
transition.

Case 2a: Suppose that the previous change in the in-degree of kt is a negative increment
(−1), say during the transition Ws → Ws+1, s < t. Then in the reverse sequence ←−W, in the
transition Ws+1 → Ws, the degree of kt will be incremented by 1, and d−kt(Wt) = d−kt(Ws+1).
Therefore, the term f(d−kt(Wt)) in RHS cancels f(d−kt(Ws+1)) in LHS.

Case 2b: Suppose that the previous change in the in-degree of kt is a positive increment
(+1). Suppose first that d−kt(Wt) > d−kt(W0). As the sequence returns to W0, there must exist a
time step s where in the transition Ws → Ws+1 the in-degree of kt decreases and d−kt(Ws+1) =

d−kt(Wt). Therefore, in the reverse sequence ←−W, there is an increment of d−kt in the transition
Ws+1 → Ws, and d−kt(Wt) = d−kt(Ws+1), and the corresponding terms in LHS and RHS cancel
each other. Suppose now that d−kt(Wt) < d−kt(W0). As the sequence starts from W0, there
must exist a time step s where in the transition Ws → Ws+1 the in-degree of kt decreases and
d−kt(Ws+1) = d−kt(Wt). Then, the reasoning is much the same as in the previous case.

2. It remains to prove (19). Considering the two states W and W + Vi,j − Vi,k, we get from
(17)

πPAf (W )
f(d−j (W ))

m
∑

h f(d−h (W ))|Ci ∩Mi(W )|
=

πPAf (W + Vi,j − Vi,k)
f(d−k (W + Vi,j − Vi,k))

m
∑

h f(d−h (W + Vi,j − Vi,k))|Ci ∩Mi(W + Vi,j − Vi,k)|
.

As |Ci ∩Mi(W )| does not depend on W by Proposition 2 (3), the result follows.
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6.5.7 Proof of Proposition 6

Using the notation introduced above, the set of possible choices for agent i is Ci, among which
the agent has to choose di − |Ei \ Ci| =: ki links. Therefore, the number of choice subsets
is
(
ci
ki

)
, with ci = |Ci|. We order these subsets by the following procedure. Let for simplicity

Ci = {1, 2, . . . , ci}. Let us define the following order on subsets (omitting braces, commas and
subindex i for simplicity and ordering the elements of subsets in numerical increasing order):

12...(k − 1)k, 12...(k − 1)(k + 1), . . . , 12...(k − 1)m, 12...km, 12...k(m− 1), . . . , 12...k(k + 1),

12...(k + 1)(k + 2), . . . , 12...(k + 1)m, . . . , 12...(k − 2)(m− 1)m, 12...(k − 1)(m− 1)m,

. . . , 12...(k − 1)k(k + 1), . . . , . . . , (m− k + 1)...m.

The rationale is that each “position” is alternatively increasing and decreasing, starting from
the last position. For example, taking ci = 7 and ki = 3, the following sequence is obtained
(reading the columns from top to bottom and from left to right):

123 135 167 234 356
124 134 267 235 357
125 145 256 236 367
126 146 257 237 467
127 147 247 347 457
137 157 246 346 456
136 156 245 345 567

Doing so, it can be checked that between two consecutive subsets, there is only one element
in the set difference. Let us number the subsets in this sequence from 1 to `i :=

(
ci
ki

)
.

Once the previous operation has been done for each agent, a particular state is coded by
a chain (or word) of n numbers s1 · · · sn, with 1 6 si 6 `i corresponding to the sith subset
in the sequence of choices for agent i. It remains to order these words in such a way that
between two consecutive words, only one agent has changed its choice subset, taking the next
or preceding choice subset in the sequence. Due to the above construction of the sequence,
it follows that between two consecutive states, only one link has been deleted, and one added,
i.e., a Hamiltonian path in GQ has been constructed. The principle of the ordering of the words
resembles the previous one and is as follows: alternatively increase from 1 to `i then decrease
from `i to 1 each “letter” in the word, starting from the last letter. This gives for example, taking
n = 3, `1 = 2, `2 = 3, `3 = 6, the following order (reading the columns from top to bottom and
from left to right):

111 126 131 236 221 216
112 125 132 235 222 215
113 124 133 234 223 214
114 123 134 233 224 213
115 122 135 232 225 212
116 121 136 231 226 211

As it can be checked, between two consecutive words, only one letter has changed, and the
increment is ±1.

6.5.8 Generation of random preference profiles

For sake of simplicity, we assume that each agent has the same maximal number of links d
and the same number of acceptable links a. For each level of correlation α ∈ [0, 1], a random
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preference profile is generated by repeating the following operation for each agent. We consider
two “urns”, urn 1 initially contains objects 1 to a, urn 2 initially contains all objects. We then
consider a binomial distribution with n trials and probability of “success” α. In case of success,
we draw an object in the first urn, remove it from both urns, and assign it as acceptable to
the agent (i.e., we set ui(j) = 1 where i and j respectively are the agent and the object under
consideration). In case of failure, a similar procedure is followed but the object is drawn from the
second urn. This procedure generates a preference profile for each agent. One shall remark
that if α = 0, the preferences of all agents are independent, while for α = 1 the preferences are
fully correlated as for all i, Ei = Ci = {1, · · · , a}.
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6.6 States and transition matrices for numerical examples

6.6.1 States and transition matrices for Example 4

There are 25 = 32 states, which are ordered in the following way (for each agent, 0 indicates
1st choice, 1 indicates 2nd choice):

state number
1 0 0 0 0 0
2 1 0 0 0 0
3 0 1 0 0 0
4 1 1 0 0 0
5 0 0 1 0 0
6 1 0 1 0 0
7 0 1 1 0 0
8 1 1 1 0 0
9 0 0 0 1 0

10 1 0 0 1 0
11 0 1 0 1 0
12 1 1 0 1 0
13 0 0 1 1 0
14 1 0 1 1 0
15 0 1 1 1 0
16 1 1 1 1 0
17 0 0 0 0 1
18 1 0 0 0 1
19 0 1 0 0 1
20 1 1 0 0 1
21 0 0 1 0 1
22 1 0 1 0 1
23 0 1 1 0 1
24 1 1 1 0 1
25 0 0 0 1 1
26 1 0 0 1 1
27 0 1 0 1 1
28 1 1 0 1 1
29 0 0 1 1 1
30 1 0 1 1 1
31 0 1 1 1 1
32 1 1 1 1 1

The transition matrix for the preferential attachment and the transition matrix for the modified
2-hops (follower of follower) with ε = 0.1 are given below:
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6.6.2 A second numerical example

We study a more sophisticated situation with 6 agents, where the fixed choices are (1,2), (2,4),
(3,5), (4,1), (5,2), (6,1) (see figure below). Suppose that the sets Ci of possible choices are:

C1 = {3}, C2 = {1, 6}, C3 = {2, 4, 6}, C4 = {2, 3, 5, 6}, C5 = {3, 4}, C6 = {2, 4, 5}

and the out-degrees for agents 1 to 6 are respectively 2, 2, 3, 3, 3, 4. This means that agent
1 has only one choice (to form link (1,3)), agent 2 has 2 choices (agents 1 and 6), agent 3
has 3 choices (to choose 2 agents among agents 2, 4, 6), agent 4 has 6 choices (choose 2
agents among agents 2, 3, 5, 6), and agents 5 and 6 have only 1 choice, namely to take all
their possible links. Therefore, the total number of states is 1× 2× 3× 6× 1× 1 = 36, listed in
the table below.

state number
1 0 0 0 0 0 0
2 0 1 0 0 0 0
3 0 0 1 0 0 0
4 0 1 1 0 0 0
5 0 0 2 0 0 0
6 0 1 2 0 0 0
7 0 0 0 1 0 0
8 0 1 0 1 0 0
9 0 0 1 1 0 0

10 0 1 1 1 0 0
11 0 0 2 1 0 0
12 0 1 2 1 0 0
13 0 0 0 2 0 0
14 0 1 0 2 0 0
15 0 0 1 2 0 0
16 0 1 1 2 0 0
17 0 0 2 2 0 0
18 0 1 2 2 0 0
19 0 0 0 3 0 0
20 0 1 0 3 0 0
21 0 0 1 3 0 0
22 0 1 1 3 0 0
23 0 0 2 3 0 0
24 0 1 2 3 0 0
25 0 0 0 4 0 0
26 0 1 0 4 0 0
27 0 0 1 4 0 0
28 0 1 1 4 0 0
29 0 0 2 4 0 0
30 0 1 2 4 0 0
31 0 0 0 5 0 0
32 0 1 0 5 0 0
33 0 0 1 5 0 0
34 0 1 1 5 0 0
35 0 0 2 5 0 0
36 0 1 2 5 0 0

For PA, the transition matrix has values on the diagonal which are above 0.9, implying a
slow process. The maximum between the modulus of 2nd largest eigenvalue and modulus of
smallest value is 0.977688, and when applying the Metropolis process (see subsection 5.4),
this value changes to 0.98159. The stationary distribution is given on Figure 9. We can see
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Figure 9: Stationary distribution Ex. 6.6.2 with PA

that the states 1, 7 and 25 are much more probable.
With FF, the diagonal in the transition matrix is less strong, implying a faster convergence.

The maximum between the modulus of 2nd largest eigenvalue and modulus of smallest value
is 0.973091, and when applying the Metropolis process, this value changes to 0.991725. The
stationary distribution is given on Fig. 10. As before and even more strongly, states 1, 7 and 25

Figure 10: Stationary distribution Ex. 6.6.2 with FF

are much more probable. This can be explained as follows: considering fixed links, agents 3
and 6 have in-degree 0. Observe that agent 6 appears as a possible choice for agents 2, 3 and
4. As they have no incentive to choose agent 6, choices corresponding to avoid 6 (for agent
2: value 0; for agent 3: value 0; for agent 4: values 0, 1, 4) are more probable. As it can be
checked in the above table, these correspond to states 1, 7 and 25.
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