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1. Introduction 
The convergence of digital and green transi[ons has the poten[al to address interconnected social, 
economic and environmental challenges. This convergence, referred to as the twin transi[on agenda, 
aims to foster economic growth, enhance compe[[veness, and accelerate progress toward 
sustainability goals (European Commission et al., 2022). While this convergence offers opportuni[es 
for transforma[ve change (Bachtrögler-Unger et al., 2023; Piscicelli, 2023), it also poses risks of 
deepening exis[ng inequali[es (Bohnsack et al., 2022; Ha et al., 2022; Mäkitie et al., 2023). 
Recognising these challenges, the European Commission emphasises the need to ensure that all 
European regions benefit from the development of digital and green technologies (European 
Commission, 2024). However, dispari[es across regional innova[on porgolios may constrain their 
capacity to implement this strategy effec[vely (Bachtrögler-Unger et al., 2023) 

The twin transition is a policy-oriented agenda designed to bridge digital and green transitions (Aloisi, 
2025; European Commission et al., 2022). A key question is whether this convergence is occurring and, 
if so, how it unfolds. Assessing the distribution of regional innovation portfolios is essential in 
understanding the capabilities of European regions in digital and green technologies and identifying 
those with the potential to integrate both. While some regions may have developed expertise 
exclusively in one of these domains, others may have developed in both, strengthening their ability to 
advance twin technologies. In contrast, regions with weak innovation portfolios in both domains risk 
lagging behind in industrial development and, consequently, in their competitiveness.  

In this context, Bachtrögler-Unger et al. (2023) identified regions optimally positioned to advance 
digital and green technologies, revealing significant differences in innovation portfolios among high-, 
middle-, and low-income regions. For instance, high-income regions such as Oberbayern in Germany 
and Île-de-France in France exhibit strong technological capabilities in both green and digital 
technologies, whereas regions in Eastern Europe with weaker technological infrastructures face 
substantial barriers in producing digital and green technologies. This uneven landscape highlights the 
complexities of integrating digital and green technologies across regions with uneven innovation 
portfolios, underscoring the need for a deeper understanding of how twin technologies emerge and 
evolve. 

To gain a better understanding of the emergence of twin technologies and the inequalities arising 
from uneven regional technological capabilities (innovation portfolios), this report examines the 
cognitive, social, and geographical convergence of digital and green technologies. Specifically, 
Deliverable 1.2 addresses two complementary aims: Landscaping the Green, Digital and Twin 
Technologies and Mapping Technological Capabilities of European Regions and Cities (T1.2) and 
Mapping Green, Digital and Twin Scientific Specialisation in Europe (T1.3). Our proxy of regional 
technological capabilities is assessed using patent and scientific publications (innovation portfolios), 
while specialisation is assessed using complex system indicators. The analysis provides a 
comprehensive perspective on regional disparities in the production of digital and green technologies 
and their potential to generate twin technologies.  

Our framework builds on the idea that synergistic interactions between unrelated knowledge domains 
can drive the emergence and development of new technologies (Boschma, 2017; Boschma et al., 2017; 
Castaldi et al., 2015; Frenken et al., 2007). In this context, cognitive convergence between distinct 
domains (Arroyave et al., 2021; Petersen et al., 2021), such as digital and green technologies, creates 
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a shared knowledge space, which facilitates the further development of twin technologies. Moreover, 
cross-regional collaboration plays a crucial role in diversifying the emerging knowledge space through 
cross-fertilisation between regions (Balland and and Boschma, 2021), fostering diverse technological 
advancements in digital and green domains. However, this shared knowledge space is often co-located 
within regions (Heimeriks and Balland, 2016), as both tacit and codified knowledge are inherently 
place-dependent and digital and green might share knowledge infrastructures within regions. 
Therefore, evaluating cognitive and social convergence within regions is essential for understanding 
the uneven distribution of shared knowledge space and its implications for regional inequalities.  

This report focusses on the digital aspects of the Fourth Industrial Revolution, particularly automation 
technologies, which are most likely to generate inequalities in the labour market (Prytkova et al., 
2022). Specifically, the PILLARS project (Horizon 2020 GA: 101004703) dataset is used to identify 
Digital Automation Technologies (DAT), encompassing robotics, computing processing, artificial 
intelligence, and additive manufacturing (Prytkova et al., 2022). For green technologies, the ENV-TECH 
and Y02/Y04S tagging schemes capture innovations related to climate change mitigation and 
adaptation (Favot et al., 2023). These green technologies are further categorised into eight key policy-
relevant supply systems and sectors: clean energy, transport, buildings, food, materials, waste 
management, nature-based solutions, and phase-out technologies. This categorisation provides a 
more detailed understanding of how different systems and sectors are regionally distributed and how 
they converge with DAT. From a methodological perspective, there is no consensus on what 
constitutes twin technologies (Bachtrögler-Unger et al., 2023). Therefore, co-citation coupling 
(Grauwin and Jensen, 2011; Romero-Goyeneche et al., 2022; Yan and Ding, 2012) is employed to map 
cognitive linkages between DAT and green technologies, enabling the identification of a shared 
knowledge landscape between them and serving as a proxy for emerging twin patents and scientific 
publications. Lastly, patents and scientific publications in DAT, green, and twin technologies are geo-
localised across 271 NUTS-2 regions (including more than 700 NUTS-3 functional urban-areas), 
covering 27 European Union (EU) countries and the UK, Norway, Liechtenstein, Iceland, and 
Switzerland. 

This study employs three families of indicators to assess the uneven regional distribution of 
technological capabilities across regions: knowledge unevenness distribution, inter-regional 
complementarities, and regional diversification potential. Knowledge unevenness distribution is 
measured using the Gini index (Sitthiyot and Holasut, 2020), which evaluates the distribution of 
complex knowledge associated with DAT, green, and twin patents and scientific publications across 
European regions. Inter-regional complementarities are evaluated by using Network Analysis to assess 
cross-regional collaboration patterns (Balland and and Boschma, 2021), categorising regions into four 
types: those with strong national and European collaboration, those collaborating only nationally, 
those engaged primarily in European collaboration, and those with low collaboration levels. Regions 
with low collaboration may struggle to diversify their innovation portfolios, while those engaged at 
both national and European levels are better positioned for technological advancement. Lastly, 
regional diversification potential is assessed by using the relatedness approach (Boschma, 2017) to 
identify regions with high or low potential for diversification in DAT and green technologies. Four 
regional types emerge: regions with no diversification potential, locked in low technological 
diversification; green-specialized regions, with strong diversification potential in green but weak in 
DAT; digital-specialized regions, with the reverse pattern – high DAT and low green diversification 
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capabilities; and regions with high diversification potential in both, which are best positioned for the 
emergence of twin technologies. 

Our findings align closely with the EU Cohesion Policy 2021–2027 (European Commisssion, 2022),  
particularly the goals of fostering a Smarter and Greener Europe. The results highlight significant 
fragmentation in DAT, Green, and Twin technologies across European regions, which may hinder the 
effective implementation of the twin transition agenda (European Commission et al., 2022). Notably, 
peripheral regions remain disconnected from broader innovation networks, while more developed 
regions are better positioned to lead in DAT, green and twin technologies. Although some peripheral 
regions have developed a strong scientific knowledge base, the lack of inter-regional connectivity and 
collaboration in the invention of new technologies may limit their ability to diversify innovation 
portfolios, benefit from knowledge spillovers, and integrate into wider European innovation 
ecosystems. In this context, the twin transition agenda may risk reinforcing rather than reducing 
structural inequalities unless these disparities are addressed by supporting collaborative governance 
and improving regional absorptive capacity—not only to produce scientific knowledge but to translate 
it into invention, market deployment, and regional economic transformation. 

The following sections are structured as follows: a more detailed explanation of the green and digital 
transitions is provided in Section 2, which introduces our conceptual and analytical framework, which 
is grounded in the relatedness approach and explores the convergence of cognitive, social, and 
geographical domains. Data and methods are presented in Section 3. Key findings are presented in 
Section 4, followed by a discussion in Section 5. 

 

 

 

 

 

 

 



 

 
This project has received funding from the European Union’s Horizon Europe research and 
innovation programme under grant agreement No 101132559. 

 

8 

2. Background and rationality  
Techno-economical change is characterised by a pattern of convergence and divergence cycle (Roco 
et al., 2013). Divergence is characterised by competing or conflicting techno-economic forces that can 
induce fragmentation. In contrast, synergic convergence across unrelated knowledge domains 
(Petersen et al., 2021) can lead to the emergence and development of new techno-economic 
paradigms (Perez, 2002). The convergence framework has been essential in analysing technological 
revolutions such as the Manhattan Project (Hughes, 2003), the Human Genome Project (Helbing, 
2012; Petersen et al., 2018) and the Brain Project (Grillner et al., 2016; Petersen et al., 2021). These 
studies illustrate patterns of public and private collaboration and knowledge integration across 
various fields to develop radical innovation.  

The recombination and convergence of technologies is not a linear process due to institutional barriers 
(Frickel and Gross, 2005) , complex interactions among social actors (Balland and and Boschma, 2021), 
fuzzy cognitive translations (Arroyave et al., 2021; Heimeriks and Balland, 2016), market constraints 
(Stephan, 2012) and possible external shocks (Steijn et al., 2023). The differences in dynamics between 
DAT and green technologies manifest in several ways, making it difficult to anticipate the directions of 
their convergence1. In this context, the successful convergence of DAT and green technologies relies 
on integrating knowledge and fostering collaboration, creating trajectories that can address social, 
economic, and environmental challenges. Cognitive interactions establish a shared knowledge base 
that drives innovation and technological integration (Arroyave et al., 2021; Petersen et al., 2023, 
2021), while social convergence involve partnerships among firms, institutions, and policymakers, as 
well as spillovers that promote regional knowledge diffusion (Arroyave et al., 2021; Balland and and 
Boschma, 2021; Petersen et al., 2023). Together, cognitive and social integration can foster the 
convergence necessary for the critical emergence of complex knowledge (Arroyave et al., 2021; 
Bettencourt and Kaur, 2011; Heimeriks and Leydesdorff, 2012), enabling the integration of green and 
digital domains into new technological trajectories. In addition, understanding regional dynamics is 
crucial, as complex knowledge is typically rooted in the specific locations where it is produced, relying 
on tacit and codified knowledge that is place-dependent (Balland et al., 2019; Boschma, 2017; 
Boschma et al., 2014). This spatial dependency underscores the importance of analysing regional 
capabilities for diversification and their distribution across different places  (Iammarino et al., 2019). 

To analyse the regional dynamics of cognitive and social convergence, the framework of regional 
diversification and relatedness is therefore applied (Balland et al., 2019; Boschma, 2017). This 

 
1 Green technologies are typically characterised by decentralised production and consumption (Brisbois, 2020; Meeks et al., 2025) and 
institutional support from diverse actors (Bogers et al., 2022; Lesch et al., 2023). The diversity of actors and the decentralised nature of 
green technologies represent significant coordination challenges to optimise system processes and production (Brodnik et al., 2025; Kivimaa 
et al., 2019; Papachristos et al., 2013). For instance, in the circular economy, processes such as collection, processing, and material reuse 
require the coordination of multiple stakeholders and the support of information and communication systems (Chauhan et al., 2022; 
Piscicelli, 2023). In this context, DAT offer a valuable solution by enhancing coordination among stakeholders while optimising and 
standardising processes. Yet, while DAT holds great potential to advance sustainability goals, such as those related to the circular economy, 
it also introduces significant uncertainties. Not all DAT contribute positively to sustainability (Mäkitie et al., 2023). For example, DAT are 
extensively adopted across various industrial sectors, including those with a significant dependence on fossil fuels (Bohnsack et al., 2022; Ha 
et al., 2022). A second example highlights the accumulation and processing of data linked to digital technologies, which can result in 
considerable greenhouse gas emissions and adversely affect water and soil resources (Al Kez et al., 2022). Another example is the power 
imbalances between firms in the digital and green technology sectors that may favour the former (Johnstone et al., 2024), potentially 
diverting focus away from sustainability efforts. 
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approach is employed to enhance the understanding of convergence and to gain deeper insights into 
how existing capabilities within regional invention portfolios shape the convergence of DAT and green 
technologies, fostering the emergence and development of twin technologies. Regions with well-
established innovation portfolios and access to resources are better positioned to integrate green and 
digital technologies and develop new pathways for twin transitions (Bachtrögler-Unger et al., 2023). 
Conversely, regions dependent on less complex economic activities face greater barriers to adopting 
and integrating these technologies (Balland et al., 2019; Balland and and Rigby, 2017; Rigby et al., 
2022), potentially exacerbating regional disparities. Additionally, some regions risk becoming locked 
into less innovative paths (Dolfsma and Leydesdorff, 2009) or trapped in low-complexity economic 
activities (Balland and Boschma, 2024), increasing their dependence on polluting and inefficient 
technologies. 

Additionally, the relatedness framework provides an evolutionary approach to study the emergence 
and development of DAT and green technologies. While DAT and green technologies have emerged 
and developed over the last two decades, their convergence is arguably in the early stages. The early 
emergence of new technological trajectories is often characterised by high levels of uncertainty and 
limited resilience, as this knowledge remains weakly embedded in existing regional networks 
(Heimeriks and Balland, 2016; Whitley, 2000). At this stage, the formation of formal and informal social 
networks is crucial, as these networks create the conditions necessary for technological incubation 
(Arroyave et al., 2021; Heimeriks and Leydesdorff, 2012; Petersen et al., 2023, 2021). The integration 
of knowledge and the collaboration of diverse social actors shape the production of new technological 
inventions within regions (Balland and and Boschma, 2021). However, not all innovations progress 
equally; certain technologies may be prioritised over others, a process known as pre-selection (Dosi, 
1997; Dosi and Nelson, 2010), which is critical in defining the potential directions of regional 
technological trajectories. This prioritisation often reflects the structural and regional institutional 
contexts in which these trajectories emerge.  

As trajectories advance beyond the emergence phase, they enter a stage of development marked by 
growth and acceleration, as evident in the case of DAT and green technologies. This phase involves 
the diffusion, replication, recombination and improvement of technologies, transitioning from 
experimental beginnings to broader adoption and diversification (Bettencourt et al., 2009; 
Bettencourt and Kaur, 2011; Dolfsma and Leydesdorff, 2009; Perez, 2009). Early successes in 
technological invention often attract investment (Schot and Kanger, 2018), scaling innovations and 
embedding them within established networks in regions. Over time, these technological trajectories 
evolve through specialisation, recombination, or coexistence in regions, aligning with broader techno-
economic paradigms. 

 In this direction, the uneven distribution of innovation capabilities across different regions 
significantly influences the direction of both DAT and green technologies. This distribution can also 
impact their convergence, leading to distinct regional pathways. Building on these complex evolving 
dynamics, the emergence and development of technological trajectories can follow at least three 
pathways (Table 1), each contributing uniquely to the evolution of twin technologies 

The first trajectory involves specialisation within a single domain—DAT or green—without significant 
integration between the two. Despite substantial advancements, DAT and green technologies often 
exhibit high levels of regional specialisation, as shown by Bachtrögler-Unger et al., (2023). The second 
trajectory involves the diffusion or amplification of knowledge from one domain to another (Chen and 
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Hicks, 2004). For example, the application of Artificial Intelligence (AI) to improve the efficiency of 
clean energy technologies (Yao et al., 2023)  highlights how digital innovations can enhance green 
trajectories. This diffusion generates expectations about cross-domain applications (Papachristos et 
al., 2013) but does not necessarily lead to profound diversification within the invention and scientific 
production domains. In other words, DAT and green technologies may coexist within regions, being 
produced and applied in complementary ways without exhibiting significant convergence at the 
knowledge production and invention stage. The third is the convergence of digital and green 
technologies, resulting in the creation of entirely new technological trajectories. By combining 
foundational elements from both domains, this trajectory fosters the critical emergence (Arthur, 2009, 
2007; Kauffman, 2019) of twin technologies, which hold the potential to drive a new phase of 
technological development.  

To further explore the three pathways of development between DAT and green technologies within 
regions, the following sub-section outlines a systematic approach to categorising regions based on 
their potential for twin technologies, providing an analytical framework for understanding their 
unique opportunities and challenges. The analytical framework allows us to determine the extent to 
which regions with existing specialisation in either green or digital technologies have the potential to 
develop twin technologies 

Table 2.1: Trajectories of diversification. 

Pathway Explana-on Digital, Green, and Twin Transi-ons Examples 

 
Digital OR 
green 
specializa1on 

Growth and incremental 
op1miza1on occurs 
within a single 
technological domain—
either green or digital—
without significant 
integra1on or interac1on 
between the two. 

Reflects the independent advancement 
of green or digital technologies. Digital 
domains may focus on AI or IoT, while 
green domains emphasize renewable 
energy or energy storage. Although 
these advancements are significant, they 
remain siloed across regions, limi1ng 
cross-domain synergies required for twin 
transi1ons. 

Example: Development 
of energy storage 
(green) or autonomous 
driving technologies 
(digital), with no 
integra1on between the 
two. 

 
Coexistence 
Diffusion 
without 
integra1on  

Innova1ons or 
knowledge from one 
domain influence and 
enhance technological 
progress in the other 
domain through indirect 
interac1on or 
applica1on. 

Supports the complementary evolu1on 
of green and digital technologies by 
enabling digital innova1ons (e.g., AI, IoT) 
to enhance green technologies through 
op1miza1on of energy usage or 
emissions monitoring. While integra1on 
occurs during the diffusion and 
applica1on phases, it does not extend to 
the inven1on stage. This pathway fosters 
co-existence and par1al integra1on, with 
limited convergence in the crea1on of 
new technologies 

Example: Blockchain 
(digital) tracks 
renewable energy 
supply chains (green), 
enhancing transparency. 
Integra1on occurs in 
applica1on, not in the 
inven1on of either 
technology 

 
Digital AND 
green 
Convergence 

Represents the 
integra1on of digital and 
green technologies into 
en1rely new 
technological paradigms, 
crea1ng new twin 
technological trajectories 

Enables the emergence of en1rely new 
technological trajectories combining 
digital and green elements. This pathway 
marks the realisa1on of twin transi1ons, 
fostering novel radical innova1ons. 

Example: Smart grids 
combining renewable 
energy with IoT 
technologies; 
autonomous vehicles 
powered by renewable 
energy 
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3. Analytical framework  
The analytical framework focuses on identifying the cognitive and social convergence of DAT and 
green technologies across different European regions. In addition to this, geographical colocation is 
examined to assess whether DAT and green regions coexist, even in the absence of convergence in 
their invention or knowledge production. Furthermore, the framework analyses the temporal 
dynamics of technological trajectories within regions to uncover convergence, divergence, and 
coexistence patterns between these two technological domains. The next subsection presents the 
data set, followed by an overview of the methodological framework. 

3.1. Data 

Digital technologies: Using the dataset generated by the PILLARS project (Horizon 2020 GA: 
101004703), DAT were identified as a key focus of analysis (Prytkova et al., 2022). These technologies 
are particularly relevant to our study, as they have the potential to streamline coordination processes 
within green technologies, such as those underpinning the circular economy (Chauhan et al., 2022). 
At the same time, DAT may exacerbate inequalities by displacing human labour (Antonietti et al., 2025; 
Lee and Clarke, 2019). The dataset captures a range of technologies, including robotics, data 
acquisition and management, computing, artificial intelligence, intelligent information systems, 
additive manufacturing, networking, and user interfaces (see Supplementary Material 1, Table S1.1).  

The query used for identifying the patents is based on a robust literature review of automation 
technologies and the fourth industrial revolution (Prytkova et al., 2022). The query contains both IPC 
codes and keywords in order to ensure the precision of the identification of the patent (Prytkova, 
Ciarli, and Önder 2022, p. 29-30). Semantic analysis of patent was performed to cluster technologies 
and applications into coherent groups. Using GloVe word embeddings (Pennington et al., 2014) and 
the Louvain clustering algorithm (Blondel et al., 2008), 148 subclusters representing distinct 
technological topics were identified. The novelty and emergence of these clusters were analysed 
based on co-occurrence patterns. Trends across multiple time periods were examined to highlight 
both established and emerging technologies in digital automation, providing a comprehensive view of 
current advancements and potential future trajectories of innovation (see Supplementary Material 1, 
Table S1.1) 

For Green technologies,  a systematic collection of green patents was undertaken following the 
methodology proposed by Favot et al. (2023). This approach integrates multiple classification systems, 
including the ENV-TECH dataset (developed by OECD), the IPC Green Inventory (WIPO), and the 
Y02/Y04S tagging scheme (EPO). Following a detailed examination of these methodologies, the ENV-
TECH and Y02/Y04S tagging schemes were selected for their precision and ability to capture the 
highest percentage of green patents. The IPC Green Inventory, however, was excluded due to its 
broader and less specific definitions of green technologies, such as the inclusion of patents for "corpse 
disposal technologies," which do not consistently reflect the essence of green inventions.  

The ENV-TECH dataset systematically catalogues patents associated with environmental technologies, 
encompassing areas such as renewable energy generation, waste management, and pollution control. 
Similarly, the Y02/Y04S tagging scheme identifies patents related to climate change mitigation and 
sustainable technologies. The Y02 category specifically addresses technologies designed to reduce 
greenhouse gas emissions, such as carbon capture and storage, energy-efficient transportation, and 
smart grid systems, while the Y04S category focuses on information and communication technologies 
that enhance sustainability, including smart metering and energy management systems. 

The CPC codes (Cooperative Patent Classifications) from both methodologies were carefully and 
manually reorganised following the initial ENV-TECH classification into eight technological domains 
and 27 sectors. This classification provides a comprehensive framework to align green technologies 
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with European policy priorities, particularly the European Green Deal, the Circular Economy Action 
Plan, and the Fit for 55 packages. These categories aim to encapsulate key technological domains that 
address climate change mitigation and adaptation, fostering a sustainable transition across sectors 
(see Supplementary Material 1, Table S.1.2). 

 

Gathering patent data in European regions 

Using application identifiers from the PILLARS project and CPC codes from the ENV-TECH and Y02/Y04S 
tagging schemes, patents were retrieved from the PATSTAT global dataset. This comprehensive 
dataset provides detailed information, including citations, regional localisation, patent families, and 
CPC codes, enabling an in-depth analysis of technological innovation. Between 2000 and 2021, 
1,114,022 patent families were identified for DAT, while 3,618,375 patent families were identified for 
green technologies.  

In order to conduct a comprehensive analysis of the regional distribution of patents, the REGPAT and 
USPTO datasets were utilised. This dataset allows for the geo-localization of patents across 271 NUTS-
2 regions (including more than 700 Nuts functional Urban-areas), which span 27 EU countries, in 
addition to the UK, Norway, Liechtenstein, Iceland, and Switzerland. This regional approach enables a 
nuanced understanding of patent activity and innovation trends within these specific geographical 
areas. Patents are registered in the European Patent Office (EPO), the International Patent Office (PCT) 
and The United States Patent and Trademark Office (USPTO). This process resulted in the identification 
of 63,524 DAT patent families and 208,757 green technology patent families. 

Lastly, twin patents were identified through a two-step approach. First, 6,075 patent families were 
found to overlap between the DAT and green technologies datasets, representing twin technologies 
in the 27 European countries analysed. Second, a co-citation analysis of digital and green patent 
families was conducted to identify additional patents that exhibit shared knowledge bases. This 
analysis captures the cognitive integration of DAT and green technologies, highlighting the common 
building blocks of knowledge that underpin twin technologies. These methodological steps provide a 
robust framework for examining the convergence of green and digital technologies. Further details on 
the co-citation analysis and the cognitive convergence of these technologies are presented in the 
following section. 

 

Gathering scientific data in European regions 

Scientific publications are retrieved from OpenAlex by leveraging the descriptions of green and digital 
technologies identified in the patent analysis. The descriptions of patent CPC codes at the 4-digit level, 
gathered in the previous step, are employed alongside classifications from the PILLARS project, as well 
as the ENV-TECH and Y02/Y04S tagging schemes. The identification process involves matching these 
definitions with the structured metadata available in OpenAlex, which includes a comprehensive 
comparison with the summary, subfields, fields, and key concepts across the 4,516 distinct topics 
categorised within the OpenAlex database. 

The relevance of the identified topics is assessed through text similarity analysis using the Jaccard 
similarity index. The similarity distribution is analysed to determine an appropriate cut-off point by 
identifying the tail of the distribution. The cut-off threshold is further refined by random sampling of 
200 topics, with Type I and Type II errors being reduced to 5% and 7%, respectively.  As a result, 445 
topics from Open Alex were selected, including 169 digital topics, 211 green topics, and 65 shared or 
twin topics. These 445 topics encompass over 12 million relevant publications, reflecting a global 
spectrum of research contributions related to green and digital technologies. In this case, co-citation 
analysis is not performed because the Open Alex topics are generated using this approach. Thus, 
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identifying common DAT and green topics offers a strong method for recognizing publications related 
to twin technologies. 

In the subsequent phase, a systematic filtering process is undertaken to refine the dataset by 
identifying scientific publications associated with European researchers. This is accomplished by 
analysing author affiliations provided in OpenAlex and cross-referencing them with the 2021 NUTS-2 
regional classification system. Consequently, a total of 422,921 unique DAT publications, 442,781 
unique green publications and 131,933 to both technological domains, representing twin 
technologies. Each publication is geolocated to its corresponding NUTS-2 and NUTS-3 regions, 
enabling a structured regional analysis of research outputs related to DAT and green technologies.  

3.2.  Methodological Framework 

The methods are divided into two complementary analyses. The first set of analyses focuses on 
answering and understanding how DAT, green and twin technological innovations are evolving across 
European regions. This analysis uncovers the cognitive and social convergence of green, digital and 
twin patents within regions. The second analysis focuses on the co-existence of digital and green 
technologies within regions. This analysis permits us to analyse to what extent regions with existing 
specialisation in DAT or green technologies possess the potential to develop twin technologies. The 
rationality is that even if a region does not have capabilities in twin technologies, the co-location of 
DAT and green technologies represents potentialities for developing twin technologies either in the 
invention or diffusion side.  

 

Cognitive convergence 

The cognitive integration of knowledge can be analysed using various methodological frameworks, 
particularly in patent data studies. While OpenAlex topic codes provide a straightforward approach to 
identifying twin topics, classifying patents is more complex. Common methods include identifying 
shared patent codes (Basilico et al., 2024; Kogler et al., 2013), applying Natural Language Processing 
(NLP) for text similarity analysis (Bekamiri et al., 2024; Hain et al., 2022; Prytkova et al., 2022), and 
constructing co-citation networks (Grauwin and Jensen, 2011; Romero-Goyeneche et al., 2025, 2022). 
Each method has distinct strengths and limitations, which are important to consider when examining 
the convergence of DAT and green technologies. 

Analysing shared patent codes provides a straightforward and practical approach, offering insights 
into the institutionalisation and application of patents  (Basilico et al., 2024; Kogler et al., 2013). 
However, this method often lacks the granularity needed to uncover overlapping technological 
landscapes, potentially underestimating the number of twin patents that integrate DAT and green 
technologies. NLP models, in contrast, provide the most detailed analysis by examining titles, 
keywords, claims, and abstracts (Bekamiri et al., 2024; Hain et al., 2022; Prytkova et al., 2022). While 
this approach can reveal nuanced conceptual overlaps, it requires significant computational resources 
and may introduce challenges in identifying commonalities between different technological domains 
with very different technological definitions, such as green (e.g., circularity) and digital (e.g., 
efficiency). Moreover, shared language does not always imply shared technological trajectories, 
leading to a potential overestimation of twin patents and a miscalculation of the directions of regional 
trajectories. Co-citation networks offer a balanced alternative by analysing the interface between 
patents or scientific publications through shared citations (Grauwin and Jensen, 2011; Romero-
Goyeneche et al., 2025, 2022). This approach provides a robust conceptual and empirical 
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understanding of the common knowledge underpinning DAT and green technologies. Citations serve 
as a uniform and concrete representation of the knowledge utilised by patents, making this method 
particularly suited for exploring their technological trajectories. 

Given these considerations, a combined methodological approach is adopted to ensure both depth 
and accuracy in identifying twin patents (Figure 3.1). The first step involves identifying DAT and green 
patent families using common CPC codes. This step allows us to locate institutionalised twin patent 
families where green and digital technologies intersect. Subsequently, the undirected contribution of 
DAT and green technologies to twin technologies is undertaken using co-citation coupling—a common 
knowledge landscape between DAT-twin and green-twin patent families. In addition, emerging twin 
technologies are mapped by analysing the co-citation network between DAT and green technologies. 
In the co-citation networks, nodes represent green, digital or twin patent families, and shared citations 
define links between them. Four matrices are generated to calculate the correspondence probability 
of interactions between green, digital and twin patent families (for more detail, see Supplementary 
Material 2)  

I. Digital-Twin Interaction Matrix (undirected contribution): This matrix represents the 
interactions between digital patent families and twin patent families. It provides insights into 
how DAT patents connect to twin patent families. 

II. Green-Twin Interaction Matrix (undirected contribution): This matrix captures the 
interactions between green patent families and twin patent families, illustrating the 
connections that green technologies have with twin patents. 

III. Digital-Green Interaction Matrix (emerging twin technologies): This matrix represents the 
directed interactions from digital to green patent families, revealing the extent to which this 
DAT shared common knowledge with green families. 

IV. Green-Digital Interaction Matrix (emerging twin technologies): This matrix captures 
interactions from green patent families to digital patent families, focusing on the flow of 
knowledge or technological overlap from green to DAT domains. 
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Figure 3.1. Twin patent families’ data collection. 
The data collection process involves three complementary steps. First, common patent families in both the DAT and green 
technological domains are identified, representing institutionalised twin technologies. These patents act as a seed pool, 
reflecting early instances of convergence between the two domains, and are thus considered twin patent families. Second, 
additional twin patent families are captured by analysing shared citations between DAT or green patents and the 
institutionalised twin technologies, reflecting an indirect contribution to convergence. Third, the analysis explores 
emerging links between DAT and green patents, excluding the identified twin patent families to avoid bias. This approach 
assumes that shared citations between green and digital patent families reveal a foundational knowledge base that, while 
not formalised in patent classifications, is critical for the emergence of twin technologies. In the resulting networks, N 
indicates the number of nodes (patent families) analysed, xmin is the cut-off point in the power-law model, α (alfa) is the 
exponent of the power-law distribution, and nmin refers to the final number of patent families included in each network. 
Patent families are merged, and duplicates removed to ensure data accuracy. 
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The identification of twin patents based on their cognitive similarity enables us to analyse which 
regions are fostering the twin transition. By analysing the probability of twin patents emerging within 
specific regions, it is possible to understand the cognitive convergence between green and digital 
technologies. By estimating the probability of a region accumulating knowledge in twin technologies, 
twin regions can be identified, providing valuable insights into the spatial dynamics of technological 
advancement. 

Subsequently, knowledge unevenness distribution is analysed using the Gini Index (Sitthiyot and 
Holasut, 2020), which measures the concentration or dispersion of patents across regions. A Gini Index 
between 0.00 and 0.30 indicates evenness and a balanced distribution, while values from 0.30 to 0.50 
suggest moderate unevenness, where some regions take a leading role while others remain engaged. 
Scores between 0.50 and 0.70 reflect high unevenness, with a few regions dominating, whereas values 
from 0.70 to 1.00 indicate extreme concentration in regional hubs.  

Social Convergence (inter-regional complementarities) 

Our proxy for social convergence is based on the existence of complementary inter-regional linkages—
reflected in spillovers and measured through collaboration between regions engaged in producing 
twin patents and scientific publications (Balland and and Boschma, 2021). Using the twin patent 
dataset previously presented and twin scientific publications, network analysis is conducted to explore 
the interconnections and knowledge flows between regions. Network analysis is an effective tool for 
analysing the dynamics of knowledge exchange, offering valuable insights into how interactions occur 
and how external knowledge is integrated within innovation capabilities (Balland and and Boschma, 
2021; Balland and and Rigby, 2017; Breschi and Lenzi, 2015; Fleming et al., 2007; Guan and Liu, 2016) 

In this context, the degree of shared spillovers across regions is computed to measure the extent to 
which knowledge from other regions is utilised and incorporated. By quantifying these spillovers, 
patterns of knowledge exchange and regional interconnectedness are revealed, providing deeper 
insights into the role of these flows in fostering innovation and regional development. As highlighted 
by Breschi and Lenzi, (2015), regions often rely heavily on local and national networks for knowledge 
exchange. Due to the absence of a cohesive policy for regional integration in the digital and green 
transitions, regions may encounter higher costs associated with transferring and integrating 
knowledge from distant regions. To address these dynamics, the calculation of shared spillovers is 
conducted based on network measures and similarity indices.  

The collaboration network is constructed as follows: regions at the NUTS-2 and NUTS-3 level serve as 
the nodes of the network (𝒗𝒊𝒋), with their interactions 𝒄𝒊𝒋 represented by shared patents or scientific 
publications. If a patent or publication is associated with multiple regions, it indicates that inventors 
or scientists from these regions contributed to its development. For the purpose of this explanation, 
patents will be used as the primary example; however, the same methodology applies to scientific 
publications. The resulting network is a one-mode, undirected network 𝑵, where edges represent co-
occurrences 𝒄𝒊𝒋 of regions 𝒗𝒊𝒋within the same patent. 

In order to establish the similarity between a pair of regions, the Jaccard similarity is used. In our 
case, the similarity of region 𝒗𝟏 and region 𝒗𝟐 is calculated as follows:  

 

 



 

 
This project has received funding from the European Union’s Horizon Europe research and 
innovation programme under grant agreement No 101132559. 

 

17 

𝑱(𝒗𝟏𝒗𝟐) = 	
|𝒗𝟏	 ∩ 𝒗𝟐|

|𝒗𝟏| + |𝒗𝟐| −	 |𝒗𝟏	 ∩ 𝒗𝟐|
 

Where |𝒗𝟏	 ∩ 𝒗𝟐| is the share number of patents between region 𝒗𝟏 and region 𝒗𝟐  

Finally, the analysis distinguishes between collaboration within the same country and collaboration 
across different countries. In this step, the Jaccard index values for each pair of regions are aggregated 
separately for both cases. 

The analysis distinguishes between collaboration within the same country and collaboration across 
different countries. In this step, regions are classified into four distinct categories (Figure 3.2): (1) 
regions with a high degree of collaboration both domestically and internationally, (2) regions with 
strong domestic collaboration but limited international connections, (3) regions that exhibit high 
international collaboration but low domestic engagement, and (4) regions with minimal collaboration 
overall. 

A more granular analysis of regional collaboration is conducted at the functional urban-area2 using the 
NUTS-3 regions classification. While regional trends are captured at the NUTS-2 level, the functional 
urban-area level is crucial for understanding collaboration dynamics in sectors, as cities function as 
innovation hubs where firms, universities, and institutions form dense knowledge networks. Network 
analysis is applied to uncover collaboration patterns and identify leading functional urban areas in 
converging DAT and green technologies.  

 

Figure 3.2. National and international collaboration of regions.  

To analyse the structural properties of the network, network metrics are computed using the package 
igraph3. Table 3.3. shows the description and interpretation of each metrics following Newman, 
(2018). The network's diameter measures the shortest path between any two NUTS-3 regions, 
offering insights into the overall connectivity of the system. Density quantifies how interconnected 

 
2 hYps://ec.europa.eu/eurostat/web/metropolitan-
regions/methodology#:~:text=Metropolitan%20regions%20based%20on%20the,least%201%20NUTS%203%20region.  
3 hYps://igraph.org  
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the network is by calculating the proportion of observed connections relative to the total possible 
connections between cities. The average degree represents the mean number of connections per city, 
indicating the general level of collaboration across urban areas. Degree centralisation assesses the 
extent to which the network is dominated by a few highly connected cities, known as hubs, which 
reflects potential hierarchical structures in the collaboration network. Country assortativity measures 
the tendency of cities to collaborate more frequently with those within the same country rather than 
across borders, highlighting the degree of national versus international integration. The clustering 
coefficient captures the local cohesiveness of the network by indicating the likelihood that two cities, 
connected to the same third city, are also directly connected to each other. This is relevant for 
understanding the formation of regional knowledge clusters. To identify distinct regional collaboration 
structures, the Louvain modularity method is used to detect communities of cities that are more 
densely connected internally than with the rest of the network. The number of modules derived from 
this method provides an indication of how fragmented or cohesive the urban collaboration landscape 
is in Europe. Additionally, betweenness centrality highlights spillover regions—cities that act as key 
intermediaries in the network, facilitating knowledge exchange between different urban clusters. 
These regions play a crucial role in bridging knowledge gaps and promoting technology diffusion 
across European urban areas.  

Table 3.3 Network collaboration metrics. 
Metric Description Range Interpretation 

Diameter The longest shortest path 
between any two cities in 
the network. 

≥ 1 (depends 
on network 
size) 

High values indicate There are cities that 
are far apart in terms of collaboration 
(higher than 3-4) 

Density The proportion of 
observed connections 
relative to the total 
possible connections. 

0 - 1 High values indicate the network is 
highly interconnected. 

Average 
Degree 

The mean number of 
connections per city. 

≥ 0 (depends 
of networks 
connectivity) 

High values indicate Cities have more 
collaborations on average. 

Degree 
Centralization 

The extent to which the 
network is dominated by a 
few highly connected 
cities. 

0 - 1 Values close to 1 indicates that few cities 
dominate the collaboration network. 

Country 
Assortativity 

The tendency of cities to 
collaborate more 
frequently within the same 
country. 

-1 to 1 Values close to -1 indicates cities 
collaborate more across borders rather 
than within countries, while values close 
to 1 indicates that Cities tend to 
collaborate more within their own 
country.  

Clustering 
Coefficient 

The likelihood that two 
cities connected to the 
same third city are also 
directly connected. 

0 - 1 Low values indicates that collaboration is 
spread out.  
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Metric Description Range Interpretation 

Modularity The extent to which the 
network is divided into 
distinct, densely 
connected communities. 

0 - 1 High values indicate strongly defined 
communities with limited external 
collaboration, indicating the formation 
regional clusters. 

Number of 
Modules 

The total number of 
communities detected 
using the Louvain 
modularity method. 

≥ 1 (depends 
on network 
structure) 

High values indicate many distinct 
collaboration communities exist. 

 

Regional Convergence (Regional Diversification Potential) 

Our proxy for regional convergence is based on analysing the diversification potential of DAT and 
green technologies in each region. While some regions develop capabilities in both areas, others tend 
to specialise in either digital or green technologies (Balland et al., 2019). The Relatedness Density 
Average (RDA) is calculated for each region as a proxy for DAT and green capacities aimed at 
diversification using the EconGeo in R project (Balland, 2017). This approach is designed to evaluate 
spatial and technological proximity while identifying opportunities for diversification (Balland et al., 
2019; Hidalgo et al., 2007), serving as an indicator of technological potential to develop DAT or green 
technologies. The method involves creating co-occurrence matrices, normalising these to assess 
technological relationships through the relatedness index, and integrating them with regional 
specialisation data (for further details, see Supplementary Material 3).   

The regional analysis is performed in three analytical steps, each building upon the previous one to 
provide a nuanced perspective on regional development. Our analytical framework aims to 
operationalise the regional convergence of DAT and green technologies within regions. Using the 
analysis of relatedness (Balland et al., 2019; Hidalgo et al., 2007), regions are systematically 
categorised into four regional trajectories to uncover their potential for developing twin technologies 
(Figure 3.3). The rationale behind this analysis is that even regions lacking current twin technology 
capabilities can leverage the co-location of DAT and green technologies as a foundation for fostering 
twin technologies, whether in invention or diffusion processes. Notice that for this analysis, twin 
patents and scientific publications were excluded in order to avoid an overestimation of the co-
occurrence of DAT and green diversification capabilities.  

First, co-evolving regions with high digital and green capabilities demonstrate the strongest potential 
for developing twin technologies. Within this category, DAT and green technologies may either co-
exist or converge (Table 1). Second, regions specialising in either DAT or green technologies 
demonstrate partial capabilities, offering opportunities for strategic diversification. Third, trapped 
regions with low diversification in DAT and green technologies face significant challenges, often 
lacking the foundational knowledge base for transitions. Notice that the distinction between high or 
low levels of diversification is determined by using the median of the European region’s RDA value 
(see supplementary Material 2) 

 



 

 
This project has received funding from the European Union’s Horizon Europe research and 
innovation programme under grant agreement No 101132559. 

 

20 

 
Figure 3.3. Regional trajectories in digital, green and twin technologies.  
This analysis assesses the extent to which regions with existing specialisations in either green or digital technologies 
possess the potential to develop twin technologies. Even in regions without current capabilities in twin technologies, the 
co-location of green and digital technologies suggests opportunities for twin transitions, either through invention or 
diffusion. This approach emphasises the latent potential of regions with overlapping technological domains. 
 
The next step incorporates temporal dynamics to capture the evolution of regional invention 
trajectories using the Relatedness Density Average (RDA) for DAT and green technologies. The analysis 
spans four distinct periods. The emergence phase includes two-time windows: 2000–2006 (Period 1) 
and 2007–2011 (Period 2). The development phase includes 2012–2016 (Period 3) and 2017–2021 
(Period 4). The classification is based on the fact that the production of DAT and green technologies 
has experienced exponential growth since 2011. Transitions between categories across these periods 
are analysed using Principal Component Analysis (PCA), providing robust statistical insights into 
regional trajectories, for more detail see Supplementary Material 4. For instance, this analysis can 
identify regions that transition from low diversification in digital and green technologies in Period 1 to 
developing strong green capabilities in Period 2 and subsequently regressing to low diversification in 
Period 3. By tracing these trajectories, this step highlights regions that are progressing, stagnating, or 
regressing, offering insights into the dynamic nature of regional development. 

This multi-step approach enables us to trace regional trajectories and identify patterns of 
diversification. It reveals regions that are stuck in cycles of low diversification, specialized areas with 
limited integration, and those that have the potential to embrace twin transitions. By integrating 
spatial, temporal, and statistical analyses, the methodology offers a comprehensive understanding of 
regional capabilities and their potential for DAT, green and twin technologies. 
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4. Empirical Findings 
This section presents the mapping of regional capabilities in DAT, green, and twin technologies across 
Europe by analysing patents and scientific publications. The analysis begins by characterising 
technological domains and regional trends in DAT and green technologies. It then explores the 
cognitive, social, and geographical dimensions of these technologies to assess their convergence. By 
examining these dimensions, the study uncovers regional disparities in knowledge capabilities, 
providing systematic insights into the uneven distribution of technological resources across European 
regions. 

4.1.  Data Characterisation 

Table 4.1 provides an overview of the data used in the analysis, collected following the methodology 
outlined in Section 3. The dataset spans from 2000 to 2021. Green technologies have a higher number 
of patents and publications, as they cover a broader range of innovations, whereas the analysis of 
digital technologies is limited to DAT. However, DAT has nearly the same number of publications as 
green technologies due to the use of OpenAlex topics, which do not strictly confine digital technologies 
to automation but also include broader applications. For example, the OpenAlex topic on ‘Natural 
Language Processing’ covers various fields, such as topic modelling and text recognition, which, while 
not strictly related to automation, are still considered under DAT technologies in the scientific 
publications dataset. 

 
Table 4.1. Data characterisation. 

Domain Patents PublicaPons 

DAT 63,524 494,824 

Green 208,757 515,512 

Twin 17,049 160,940 

 
A detailed characterisation of the data is presented in Figure 4.1, which shows eight technological 
domains in green technologies and their interaction with DAT. The analysis distinguishes between 
patent activity and scientific publications to capture invention and knowledge production variations.  
Panel (a) illustrates the frequency of patents across different green technology domains. Clean Energy, 
Phase-out technologies, Waste Management, and Sustainable Transport emerge as the most patented 
areas, indicating their significance in green innovation.  Panel (b) explores the integration of DAT 
within green technology patents. Sustainable Materials show the highest level of convergence with 
DAT, followed by Clean Energy and Buildings. Moreover, although Waste Management and Phase-out 
technologies are highly patented, they exhibit limited integration with DAT, highlighting a gap 
between DAT and green technological synergy in these technological domains. Panel (c) shows the 
frequency of scientific publications where Clean Energy, Sustainable Materials, and Sustainable Food 
dominate. Notably, Sustainable Food and Nature-Based Solutions (NbS) have a stronger presence in 
scientific research compared to patent activity, suggesting different research and development 
priorities in scientific knowledge. Panel (d) examines the convergence of DAT within scientific 
publications on green technologies. Clean Energy, Sustainable Transport, and Sustainable Materials 
are leading in the integration of DAT. Interestingly, while Sustainable Food features prominently in 
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scientific output, it shows minimal integration of DAT, indicating limited digital incorporation in food-
related publications.  

 
Figure 4.1. Frequency of patents and scientific publications associated with eight green technological 
domains.  
Panel (a) displays the frequency of patents related to each technological domain. Panel (b) illustrates the frequency of 
patents where Green Technological Domains intersect with DAT. Panel (c) presents the frequency of publications 
associated with green technologies. Panel (d) shows the convergence of DAT and green technologies in scientific 
publications. 
 
Despite differences in focus, both patent activity and scientific publications consistently highlight 
Clean Energy, Sustainable Materials, Sustainable buildings and Sustainable Transport as key domains 
where green and digital technologies intersect. However, areas such as Waste Management and 
Phase-out show strong patenting activity but less scientific attention, while Sustainable Food and NbS 
receive more focus on academic research than on technological development. These patterns reflect 
both overlap and divergence between inventions and research in the development of green 
technologies. 

A more detailed analysis is presented in Figure 4.2, showing the most frequent Cooperative Patent 
Classification Codes (CPC) associated with DAT and green technologies. The most frequent CPC codes 
in the DAT dataset are related to Machine Learning, Neural Networks, and ICT-based healthcare. In 
contrast, scientific publications focus on broader topics such as Artificial Intelligence (AI), Optical Fiber 
Communication, and 5G networks. Regarding green technologies, the top ten Green Patent CPC codes 
emphasise areas such as energy storage, wind turbines, and vehicles. Similarly, the main OpenAlex 
topics reflect research efforts in renewable energy and eco-friendly materials. While Open Alex topics 
provide broader descriptions of the technologies, the patent data highlights specific applications 
across various sectors, including marketing, healthcare, project management, biomedical devices, 
automobiles, aviation, and manufacturing.  
 

a)

c)

b)

d)
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Figure 4.2. The top 10 technologies are categorised using CPC codes.  
Open Alex topic descriptions were utilised to identify the most frequent scientific topics. Digital technologies are 
represented in blue, while green technologies are indicated in green. 
 

4.2. Green and Digital Regional Characterisation  

This subsection presents the characterisation of the regional distribution of patents and scientific 
publications of DAT and green technologies in Europe. The analysis provides an initial understanding 
of regional inequalities in the production of these technologies. The results reveal a pronounced 
concentration of knowledge accumulation in DAT and green technologies, with significant disparities 
among European regions, as illustrated in Figure 4.3. The Gini Index, which quantifies regional 
inequality in the distribution of patent families and scientific publications, indicates similar levels of 
disparity across the four categories analysed: DAT patents exhibit the highest level of inequality with 
a Gini Index of 0.689, followed by green patents at 0.669, DAT publications at 0.624 and green 
publications at 0.608.  
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Figure 4.3. European distribution of patents and scientific publications in DAT and Green technologies.  
The intensity of the colours indicates the probability of finding either a patent or a scientific publication in each region. 
The distributions of the probabilities are fitted using quantiles with probability (0, 0.25, 0.5, 0.75, 1).  
 
The comparison between patents and publications reveals that scientific knowledge accumulation 
does not always lead to invention activity. A key distinction between patenting and publishing is the 
broader geographical distribution of scientific publications. While some regions actively engage in 
both patenting and publishing, others demonstrate significant disparities between scientific 
knowledge production and invention.  

For DAT, 49.85% of regions show a similar degree (high or low) probability of developing DAT in 
patenting and publishing, whereas for green technologies, this overlap is lower at 43.81%. Regions 
with a strong presence of patents and publications are mainly industrial hubs, including Germany, 
France, the UK, and Scandinavia. In contrast, regions in Southern and Eastern Europe show lower 
levels of technological production. However, green patents are less concentrated than DAT patents, 
indicating a broader regional engagement in green technological development. Notably, several 
regions in Spain, and Italy play a significant role in green technology innovation, contrasting with the 
more centralised nature of DAT patents. 

Overall, while patenting activity is highly concentrated in a few industrial hubs, publications are more 
evenly spread, with greater participation from regions in Southern and Eastern Europe. These areas 
contribute to scientific knowledge production but are less engaged in the invention process. For 
example, several regions in Italy play a significant role in publishing research on DAT and green 
technologies, yet only a limited number of these regions also demonstrate substantial patenting 

Gini Index: 0.689 Gini Index: 0.624 

Gini Index: 0.669 Gini Index: 0.608 
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activity. This suggests that while knowledge creation occurs in a wider range of regions, the transition 
from research to innovation remains concentrated in specific technological hubs.  

4.3. Knowledge unevenness distribution.  

This subsection presents the results of the analysis conducted on the convergence of DAT and green 
technologies (twin technologies). These technologies were identified by examining the cognitive 
convergence of DAT and green technologies through co-citation networks. A total of 17,049 twin 
patent families and 160,940 scientific publications are utilised for the regional analysis. The analysis 
of inequalities is again accessed through analysing the regional distribution of patents and scientific 
publications.  

 

 
Figure 4.4. European distribution of patents and scientific publications in DAT and Green technologies.  
The intensity of the colours indicates the probability of finding either a patent or a scientific publication in each region. 
The distributions of the probabilities are fitted using quantiles with probability (0, 0.25, 0.5, 0.75, 1). 
 
The results indicate that patents are more unevenly distributed than scientific publications, consistent 
with previous findings (Figure 4.5). The results indicate that DAT and green converging patents are 
significantly more concentrated than scientific publications (Figure 4.4). The Gini Index for twin 
patents is 0.734, reflecting high regional inequality, while for scientific publications, it is 0.609, 
indicating a more even knowledge distribution. Additionally, only 47.09% of regions exhibit similar 
patenting and publishing activity, suggesting that scientific knowledge accumulation and technological 
innovation are unevenly distributed across regions. These findings align with trends in DAT and green 
technologies, highlighting that their cognitive convergence is following similar patterns of regional 
disparities as DAT and green technologies. Notice that for the analysis of DAT and green technologies, 
convergence patents and scientific publications were excluded to identify unique patterns in each 
subset of the analysis.
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Figure 4.5. Distribution of DAT and green technologies convergence in European regions.  
The intensity of the colours represents the probability of finding a patent in a given region. Darker colours indicated a higher probability of finding a patent in a giving region. 

Energy Patent Families Materials Patent Families Buildings Patent Families Transport Patent Families

Energy Publications Materials Publications Buildings Publications Transport Publications



 

 
This project has received funding from the European Union’s Horizon Europe research and 
innovation programme under grant agreement No 101132559. 

 

27 

In order to provide a detailed analysis of the convergence between DAT and green, the most frequent 
sectors are evaluated, including Clean Energy, Sustainable Materials, Sustainable Buildings, and 
Sustainable Transport (Figure 4.5). The Gini index results are summarised in Table 4.2. The Gini Index 
underscores the varying degrees of patenting concentration across sectors, emphasising the need to 
consider regional and sectoral dynamics when analysing the emergence of twin technologies. 
Sustainable transport exhibits the highest unevenness (Gini Index = 0.817), whereas clean energy 
publications show the lowest (Gini Index = 0.631). Despite these sectoral differences, all four 
evaluated sectors display higher uneven distribution in patenting activity, whereas scientific 
knowledge is more evenly distributed. This analysis confirms that while scientific knowledge 
production is widespread across European regions, patenting activity remains highly concentrated. 
Southern and Eastern Europe play a significant role in the scientific production of clean energy, 
sustainable transport, sustainable materials, and sustainable buildings. However, in many regions, 
scientific knowledge does not consistently translate into invention, highlighting a disparity between 
knowledge creation and technological development, where science is widespread, but innovation 
remains concentrated in a few regions.  

 
Table 4.2. GINI index indicator for the fourth twin sectors.  

GINI Index Patents  GINI Index PublicaPons 

Clean Energy 0.755 0.631 

Sustainable Materials 0.784 0.653 

Sustainable transport 0.818 0.647 

Sustainable Building 0.762 0.637 

 
In the following section, the results of twin technologies will be further examined by analysing 
collaboration networks in patenting and publishing. The analysis contributes to analysing if these 
regions falling behind in the development of twin technologies are building networks to increase their 
capabilities to develop these technologies 

4.4. Inter-regional complementarities (Social Convergence) 

This section presents an analysis of inter-regional collaboration. The results show the extent of 
cooperation within the same country, referred to as national collaboration, and cooperation between 
regions from different countries, referred to as European collaboration. The analysis allows us to 
identify potential inequalities in the collaboration networks created by each region. Network analysis 
is applied to map these relationships, and the strength of connections is measured using the Jaccard 
Similarity Index.  

Figure 4.6 categorises regions into four distinct groups based on their collaboration patterns. Regions 
characterized by strong collaboration both at the European and national levels are indicated in orange. 
Regions that primarily engage in national collaboration are depicted in green. Those that 
predominantly collaborate with areas outside their country are marked in red, while regions displaying 
weak or no collaboration at either level are shown in blue. This classification provides insights into the 
spatial structure of knowledge flows and the extent to which regions engage in collaborative networks 
that facilitate technological invention. 
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Figure 4.6.  National and European Collaboration in twin technologies.         

The results uncover significant patterns of the emergence of twin technologies and the disparities in 
knowledge accumulation. Central European regions, in line with previous findings, exhibit strong 
collaboration networks at both the national and European levels, reinforcing their role in both 
invention and scientific knowledge production. In contrast, Eastern European regions tend to display 
lower levels of collaboration, with some engaging in limited national cooperation. This lack of 
interconnections in scientific publications and patents may constrain their ability to translate scientific 
knowledge into technological invention, reinforcing existing inequalities in innovation capacity. A 
different pattern is observed in Southern European regions, where strong collaboration in scientific 
knowledge production is evident at national and European levels. Yet, these regions lack robust 
collaboration networks in twin patents. This is particularly evident in Italy, where regions engage in 
European scientific collaboration, while most lack strong linkages both nationally and internationally 
in the field of invention. 

These findings underscore the role of social collaboration in shaping the development of twin 
technologies and how disparities in knowledge networks influence regional innovation capabilities. 
The convergence of knowledge across regions is critical for translating scientific research into 
technological applications, which in turn enhances the social, economic, and environmental benefits 
of converging DAT and green technologies. The limited scientific collaboration observed in Eastern 
European regions may restrict their opportunities for transforming knowledge into technological 
advancements, further entrenching disparities in the capacity to participate in innovation-led 
economic growth. However, the case of Southern European regions indicates that even when regional 
and national scientific collaboration is strong, the absence of a well-developed collaboration network 
in the invention may still limit their ability to develop twin technologies and capture the economic and 
technological benefits of scientific knowledge production. 
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Functional Urban-areas Collaboration Networks  

A more granular analysis of regional collaboration is conducted at the functional urban-area level using 
the NUTS-3 regions classification, focusing on the convergence of DAT and Green technologies across 
Clean Energy, Material and Processing, Sustainable Buildings, and Sustainable Transport. Figure 4.7 
illustrates that collaboration is largely structured within national boundaries, with urban areas in 
France, the United Kingdom, Switzerland and Germany emerging as key regional hubs. The colour of 
the nodes indicates the country, while the size of the betweenness centrality indicates their role as a 
connection in the urban collaboration network. Each sector is composed of a different number of 
urban areas, with the lowest having 284 urban areas (transport) and the largest having 769 urban 
areas (sustainable materials).  

 

In the fourth sector analysed, Germany has more than 40% of the nodes (urban areas), showing a 
highly uneven concentration of knowledge in twin technologies across systems and sectors. 
Furthermore, cross-border collaboration remains limited, suggesting weak spillovers between 
European urban areas. This pattern is further supported by network metrics (Table 4.3), where high 
modularity (0.758–0.867) and country assortativity (0.666–0.769) indicate the concentration of 
knowledge within national clusters. These findings suggest that regions specialise in particular 
technological niches but may lack integration with other regions working on complementary 
innovations, as indicated by the high diameter of the networks (8-11) and low cluster coefficients 
(0.26-0.52). Consequently, knowledge exchange across clusters is likely limited, restricting 
diversification and reinforcing regional disparities in technological capabilities. 

 

Furthermore, the centralisation degree is relatively low across all networks (0.09–0.123), indicating 
that no single urban area is a collaboration hub at the European level. Instead, the network structure 
is characterised by smaller cities primarily connected to large cities within their own countries rather 
than forming cross-border collaborations. While this structure distributes innovation participation 
more widely, it also prevents smaller regions from directly benefiting from interactions with regions 
in other countries. This structure has significant advantages in the long-term stability of innovation 
and resilience, as technological redundancy in national networks might support the decline of 
innovation in some cities. Yet, these structures are highly vulnerable to the loss of the main city hubs, 
and their decline in innovation might produce cascade effects deeply affecting smaller cities 
depending on them. Moreover, central innovation hubs remain disconnected from each other (high 
network diameter), limiting the diffusion of cutting-edge knowledge and slowing down radical 
innovation in converging DAT and twin technologies. Therefore, these regions might struggle to 
integrate global knowledge, leading to slow diversification.  
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Table 4.3. Network metrics for the collaboration network in twin technologies. 
 

Metric Energy Materials Buildings Transport 

Nodes 601 769 319 284 

Edges 2155 4291 816 712 

Diameter 12 8 11 11 

Density 0.0121 0.0147 0.0161 0.0179 

Average Degree 7.2512 11.2874 5.1348 5.0563 

Degree CentralizaPon 0.1212 0.1741 0.0908 0.1235 

Country assortaPvity 0.6668 0.6661 0.7059 0.7686 

Clustering Coefficient 0.2648 0.525 0.3625 0.3695 

Modularity 0.8181 0.7582 0.8485 0.8673 

Number of Modules 27 29 20 23 

 
In summary, European and national collaboration networks play a fundamental role in overcoming 
barriers to translate scientific knowledge into invention, particularly in the invention of converging 
DAT and green technologies. The diversification of knowledge and skills through inter-regional 
collaboration is essential for fostering the emergence and diffusion of these technologies across 
European regions. However, the uneven distribution of collaborative networks illustrates broader 
inequalities in technological development, where some regions remain peripheral in innovation 
dynamics despite contributing to scientific knowledge production. Without addressing these 
disparities, regions with weaker invention linkages may struggle to fully capitalise on their scientific 
capabilities, further consolidating the concentration of innovation capacity in a limited number of 
regions.  

In addition, the urban-urban collaboration network shows that while twin invention collaboration 
networks are not overly centralised, they remain highly localised, with national boundaries shaping 
collaboration patterns. The weak connectivity between leading innovation hubs and the strong 
modularity suggests that regions prioritise collaboration with their closest neighbours to reduce 
knowledge transfer costs. This fragile structure of collaboration signals that the convergence of DAT 
and green technologies is in an early stage of emergence, with traditional knowledge hubs leading 
patent production but facing structural restrictions on diversification and cross-fertilisation—both of 
which are critical for radical innovation. The capabilities for technological development remain 
anchored in traditional knowledge hubs, where each country’s specialised knowledge production 
limits broader integration. Therefore, understanding how regions specialise in DAT and green 
technologies is essential to assessing their potential to innovate in twin technologies, as explored in 
the following subsection. 
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Figure 4.7. Network of Collaboration in converging DAT and green technologies NUTS-3.
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4.5. Regional Diversification Potential (regional convergence) 

In previous sections, the cognitive and social convergence between DAT and green technologies was 
analysed to identify regional capabilities related to scientific knowledge production and patenting 
activity in twin technologies. This section shifts the focus to the geographical dimension by examining 
the colocation of DAT and green patents and scientific publications across European regions. To 
accurately capture the separate dynamics of DAT and green technologies, patents and publications 
previously identified as highly converged between these domains (twin patents and publications) 
were excluded. This approach allows us to isolate the regional convergence patterns in DAT and green 
technologies without the influence of their strongest cognitive overlaps. 

This shows the analyses of the patent dataset, while the analysis of scientific publications is in 
Supplementary Material 5. The focus is on patent data as it has been shown to elucidate more regional 
inequalities.  The goal here is not to directly compare patents with publications but rather to assess 
their distinct temporal variations.  

 

Geographical patenting  

Figure 4.8 presents the results of the patent analysis across the four-time windows. Five key patterns 
emerge from the analysis. First, many regions accumulating diversification capabilities in DAT also 
accumulate capabilities in green technologies, suggesting possible complementarities between 
industries, infrastructure, and knowledge production. For instance, regions in Germany and northern 
Italy appear well-positioned to develop both DAT and green technologies. The second pattern 
distinguishes between early and late movers in DAT and green technologies. Regions that adopted 
DAT or green technologies early in the emergence phase are more likely to continue developing them 
in later periods, while late adopters often struggle to catch up. Spain provides a clear example: lacking 
strong capabilities in DAT and green technologies during the emergence phase, the country 
significantly increased its capabilities in green technologies in the third period. However, by the final 
time window, Spain once again falls into a cycle of low diversification. This finding underscores the 
importance of building absorptive capacity early in the technological trajectory, as early investments 
in technological development enhance the likelihood of successful technological diversification later. 

Third, a persistent divergence remains in Eastern Europe. While some regions show slight 
improvements over time, the overall trend is one of low diversification capabilities. Unlike regions in 
Western and Northern Europe, which have gradually expanded their technological portfolios, Eastern 
European regions face structural barriers that limit their engagement in DAT and green technologies, 
even during the development phase. Similarly, the fourth pattern highlights a growing inequality 
between core and peripheral regions. Core regions—primarily in Central and Northern Europe—
continue to strengthen their position in both DAT and green technologies, reinforcing their role as 
innovation hubs.  In contrast, peripheral regions either remain trapped in low diversification cycles or 
specialise in only one of the two technologies. This divergence suggests that existing regional 
innovation policies may not enable broader technological diffusion, potentially exacerbating 
technological inequalities across Europe. 
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The temporal analysis is summarised in Figure 4.9, where the initial four trajectories identified in each 
time window are expanded into nine categories, providing detailed insight into the different paths 
that regions have followed from 2000 to 2021. In Figure 5.10-a, regional trajectories of European 
regions are displayed, while Figure 5.10-b presents the results of the Principal Component Analysis 
(PCA). Figure 5.10-c shows the variance explained, revealing that over 95% of the variance is 
accounted for by the three first axes, which confirms the robustness of the classification. By utilising 
the three dimensions of the PCA, the cluster analysis is detailed, providing a clearer representation of 
the temporal trajectories. For instance, ten clusters are identified by the PCA, which are consolidated 
into nine regional trajectories through the merging of two groups that predominantly followed a 
converging path, along with regions where no patents were identified. 

The first category, represented by a light greenish-blue colour, includes regions where DAT and green 
technologies show high diversification potential, particularly in Central Europe, the southern UK, 
Norway, and Switzerland. These regions have the highest potential for developing DAT and green 
technologies. These regions were previously identified as hubs for developing twin technologies 
(Figure 4.4) and have strong European collaboration networks (Figure 4.6), indicating a convergence 
pathway where co-existence and hybridisation occur (Table 2.1). The second group, indicated by a 
purple colour, comprises regions that fluctuated between DAT and green technologies across the four-
time windows evaluated, such as Sicily. The next two categories are associated with specialisation in 
green technologies. The dark green regions specialise in green technologies, while the lighter green 
areas represent regions that were initially trapped in a low diversification cycle but developed 
capabilities in green technologies in the last periods. Examples of these regions include Latvia and 
central Portugal. Similarly, the next two categories relate to DAT. The darker blue regions consistently 
specialise in DAT, such as Midi-Pyrénées in France, while the lighter blue areas represent regions that 
were initially trapped in a low cycle of diversification but in the last periods have shown potential for 
developing DAT diversification, as seen in Vest in Romania. The final three categories relate to regions 
that are trapped in a cycle of low diversification. The dark pink colour indicates areas that consistently 
demonstrated low diversification capabilities in both DAT and green technologies. The lighter pink 
categories represent regions that sought to develop capabilities in DAT (lighter pink) and green 
technologies (the lightest pink) but ultimately remained trapped in a cycle of low diversification. A 
clear example is found in regions of Spain, which developed diversification capabilities in green 
technologies during the third period but ended up in the trapped category by the last period, as 
mentioned previously.  

Overall, the results demonstrate that regional technological pathways are dynamic rather than fixed. 
Some regions maintain their technological strengths, while others shift their specialisation over time, 
either catching up or falling behind. The PCA visualisation offers a structured view of these shifts, 
revealing both persistent inequalities and opportunities for technological recovery in certain regions. 
These findings provide valuable insights for targeted interventions to support regions facing 
diversification constraints and enhance the potential for DAT, and green technologies across Europe. 
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Figure 4.8.  Relatedness Density Average in DAT and Green technologies from 2000 to 2021 using patent data.  
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Figure 4.9. Regional Trajectories for Diversification in DAT and Green Technologies using patent data. 
Panel (a) displays the regional classification based on diversification trajectories in DAT and green technologies. Panel (b) 
presents the results of the Principal Component Analysis (PCA), which identifies key patterns in regional technological 
development. Panel (c) illustrates the variance explained by the first three PCA axes, which together account for more 
than 95% of the total variance, confirming the robustness of the classification. 
 
In summary, the analysis of regional technological capabilities in DAT and green technologies reveals 
distinct patterns across Europe. Our examination of patenting activity identifies key regional 
trajectories and their evolution over time. While some regions consistently develop robust capabilities 
in DAT and green technologies, others follow specialised pathways or remain trapped in low 
diversification cycles. Patent analysis indicates that regions enhancing their capabilities in DAT often 
do the same in green technologies, particularly in Central Europe, northern Italy, and parts of the UK. 
Early pioneers tend to maintain their advantage, while latecomers struggle to catch up. Notable 
regional disparities exist, with Eastern and Southern Europe showing lower diversification potential.  
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5. Discussion  
The significance of our study lies in its systematic exploration of the cognitive, social, and geographical 
convergence of DAT and green technologies. Unlike previous studies, which have primarily focused on 
mapping DAT and green technologies separately (Bachtrögler-Unger et al., 2023), our approach 
systematically examines their convergence and evaluates the uneven regional innovation portfolios 
shaping the emergence of twin technologies in Europe. Task 1.2, Landscaping the Green, Digital and 
Twin technologies and mapping technological capabilities of European regions and cities, and Task 
1.3, Mapping Green, Digital and Twin Scientific Specialisation in Europe, have been undertaken by 
analysing regional trajectories using patent data and scientific publications from 2000 to 2021. Our 
findings demonstrate that early adopters of DAT and green technologies are more likely to develop 
these technologies further, while later adopters struggle to establish consistent trajectories, 
increasing the uneven distribution of innovation portfolios across regions over time.  

Specifically, our findings show the persistence of low diversification regions in DAT and green 
technologies, particularly in parts of Southern and Eastern Europe, suggesting lock-in effects (Dolfsma 
and Leydesdorff, 2009; Simoens et al., 2022), where structural barriers limit certain regions’ ability to 
diversify into new technological developments. The results indicate that these regions, Southern and 
Eastern Europe, are engaged in the production of scientific knowledge in DAT and green technologies, 
but they are not effectively translating this knowledge into inventions, highlighting an innovation 
bottleneck (Dosi, 1997, 1988) that may lock these regions into a low diversification cycle. Scientific 
knowledge is produced across regions, but structural and institutional barriers limit the ability of 
certain regions to appropriate and transform scientific advancements into technological development. 
Rather than merely reinforcing pre-existing inequalities, this bottleneck might actively shape the 
trajectory of twin technologies within an asymmetrical innovation landscape, where many regions 
contribute to knowledge production, but only a few regions fully capture its technological and 
economic benefits. 

Moreover, the functional urban-areas collaboration network in Europe exhibits a fragmented 
structure that reinforces regional inequalities in innovation. Smaller cities primarily connect to larger 
cities within their own countries rather than forming cross-border collaborations, while large cities 
remain spatially distant from one another, restricting knowledge flows and diversification across 
European urban centres. This pattern facilitates incremental innovation within regions but limits 
interregional diversification, making radical breakthroughs less likely (Balland and and Boschma, 2021; 
Castaldi et al., 2015). The high modularity and diameter of the evaluated networks underline this 
fragmentation, as innovation remains concentrated in specialised clusters, hindering the integration 
of complementary knowledge bases essential for transformative technological advancements 
(Bachtrögler-Unger et al., 2023). Since breakthrough innovations often require the combination of 
diverse knowledge domains (Castaldi et al., 2015; Dolfsma and Leydesdorff, 2009; Frenken et al., 
2007), the structural separation between these clusters poses a significant barrier. As a result, 
technological path dependencies within European regions are reinforced, slowing the diversification 
of capabilities, particularly in twin technologies, where the convergence of digital and green 
innovation is fundamental. Moreover, this fragmented structure maintains regional inequalities by 
restricting knowledge diffusion beyond national invention clusters, limiting the ability of less 
innovative regions to integrate into broader technological ecosystems.  
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The temporal analysis of regional diversification capabilities shows that early-adopter regions are 
more likely to develop strong trajectories of diversification in DAT and green technologies, while 
peripheral regions consistently fall behind in building similar capacities. These findings reinforce the 
concerns of the EU Cohesion Policy 2021–2027 (European Commisssion, 2022), as they highlight that 
many peripheral regions lack the institutional and innovation capacity to specialise in either DAT or 
green technologies. Despite the strategic emphasis on fostering a Smarter and Greener Europe, the 
results suggest that peripheral regions often face limitations in institutional capacity, inter-regional 
connectivity, and innovation ecosystems, which constrain their ability to effectively engage with the 
twin transitions agenda. In particular, the absence of regional invention capabilities may limit the 
potential of Eastern and Southeastern regions to capture the benefits of the twin transition agenda. 
Therefore, rather than narrowing regional disparities, the twin transitions agenda may risk reinforcing 
existing structural inequalities unless these capability gaps are addressed.  

In addition, the temporal analysis shows that although policies for DAT and green technologies have 
largely evolved separately (Kovacic et al., 2024), their regional development appears to have co-
evolved in Central Europe, the south of the UK and the Scandinavian region. One possible mechanism 
is that DAT has benefited from the favourable policy environment created for green technology 
development. While EU policy has predominantly prioritised green technologies over DAT (Diodato et 
al., 2023; Faggian et al., 2025; Mäkitie et al., 2023), expanding green technologies may have indirectly 
supported DAT growth through shared infrastructure, funding instruments, and overlapping strategic 
priorities such as competitiveness and efficiency. A complementary mechanism is that green policy 
has reshaped regional industrial landscapes, weakening some industrial sectors while creating new 
opportunities not only for green technologies but also for DAT. In this sense, the expansion of green 
technologies may have indirectly paved the way for the emergence and development of DAT across 
European regions. Examples of the combined effect of these two mechanisms include AI-driven 
climate modelling and industrial decarbonisation, which attract sustainability funding while 
simultaneously strengthening regional AI and automation capacities (Lewis et al., 2024).  Similarly, 
robotics and automation solutions for circular economy initiatives—such as waste sorting or predictive 
maintenance in renewable energy infrastructure—benefit from green innovation funding despite 
being fundamentally connected to the digital industry (Chauhan et al., 2022; Piscicelli, 2023).  

While this study provides a systematic analysis of the convergence of DAT and green technologies, 
some limitations should be acknowledged. Although analysing innovation portfolio capabilities 
through patents and scientific publications reveals regional patterns of knowledge accumulation, it 
does not account for industrial and governmental investment priorities (Penna et al., 2023), which can 
shape technological trajectories and influence regional diversification. Additionally, our analysis does 
not consider the diffusion of DAT and green technologies, where multiple couplings between them 
may occur (Mäkitie et al., 2023). In addition, a more granular typology of specific technological 
domains within DAT and green technologies is needed to determine whether their recombination 
leads to incremental or radical innovation. In this context, Mäkitie et al. (2023) argue that the way in 
which digital and green transitions converge impacts their transformative potential. While digital 
technologies can drive incremental improvements—such as optimising energy generation and 
distribution through sensors and data analysis —they may also cause lock-in of existing systems, 
limiting the transformative potential of green transitions.  

To conclude, our study provides novel insights into the regional emergence and development of DAT, 
green, and twin technologies. Our findings highlight uneven regional convergence in the cognitive, 
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social, and geographical dimensions of DAT and green technologies, revealing varying regional 
capacities to support the emergence of twin technologies. The interplay between DAT and green 
technologies is likely to produce diverse techno-economic trajectories, where coexistence, 
competition, or recombination may shape regional innovation pathways. Ultimately, the way in which 
policy steers DAT and green transitions will significantly influence the unfolding of twin transition 
agenda and their social, economic, and environmental impacts. However, institutional barriers remain 
a key challenge, particularly in Southern and Eastern Europe. Overcoming these barriers requires a 
deeper focus on regional dynamics, which can reduce uncertainties, lower knowledge transfer costs, 
foster cohesion, and mitigate trade-offs in the transition process. 
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6. Supplementary Material  

Supplementary Material 1: Digital Automation Technological and green 
technologies description 

Table S1.1. Digital Automation Technologies classification. 

Category DescripPon Policy Relevance in EU Examples of Technologies 

Robots Technologies 
involving machine 
vision, automa]on, 
and robo]cs for 
industrial and service 
applica]ons. 

Supports automa]on 
and efficiency in 
industries, aligning with 
EU priori]es for 
industrial 
compe]]veness and 
automa]on. 

Machine vision and real-]me 
monitoring, Co-bots, Swarm 
robo]cs,  Service robo]cs, Semi-
autonomous, Automated 
pla`orms/vehicles, Tunnel 
boring and mining robots, 
Drones, Robo]c vehicles, 
Exoskeletons, and Robo]c 
Process Automa]on (RPA) 

Data AcquisiPon 
and 
Management 

Technologies for data 
management, 
including databases, 
cloud storage, and 
blockchain systems, 
facilitate efficient 
data handling, while 
data collec]on 
technologies, such as 
healthcare 
instruments and 
engineering sensors, 
generate real-]me 
insights to enhance 
decision-making 
across sectors 

Aligns with the EU’s 
Data Governance Act 
by enhancing secure 
and efficient data 
storage and 
management systems. 

Scanners, sensors, remote 
sensing, GPS, CCTV, Scien]fic 
and engineering instruments, 
Healthcare instruments and 
Data scraping Data base 
ssytems, Rela]onal databases, 
cryptography, security, 
blockchain, and big data 
analy]cs. 

CompuPng Technologies for 
computa]onal 
architecture, 
automated storage, 
and high-
performance 
compu]ng. 

Contributes to 
advancements in EU 
high-performance 
compu]ng ini]a]ves 
and supports cloud and 
edge compu]ng 
strategies. 

Computer architectures (e.g. 
quantum, edge, cloud, HPC, grid 
compu]ng), automated storage 
systems. 

AI & Intelligent 
InformaPon 
Systems 

Technologies u]lizing 
ar]ficial intelligence 
and machine learning 
for predic]on, 
simula]on, and 
intelligent systems. 

Supports the EU's AI 
Act by advancing 
responsible AI and 
enabling predic]ve 
analy]cs in various 
sectors. 

Simula]on, Machine Learning, 
NLP, machine vision, Expert 
system, predic]ve systems, 
speech recogni]on and text 
recogni]on and produciton 

AddiPve 
Manufacturing 

Technologies enabling 
rapid prototyping and 
produc]on using 
digital tools and 
processes, such as 
CAD and 3D prin]ng. 

Supports the EU Digital 
Strategy by fostering 
innova]on in digital 
design, prototyping, 
and produc]on, 
promo]ng advanced 

CAD/CAM systems, prototyping, 
and 3D prin]ng technologies. 
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Category DescripPon Policy Relevance in EU Examples of Technologies 

manufacturing 
processes. 

Networking Technologies focused 
on connec]vity and 
communica]on, 
including IoT and 
wireless 
communica]on 
systems. 

Promotes connec]vity 
and smart 
infrastructure 
development, in line 
with EU digital and IoT 
frameworks. 

IoT devices, wireless 
communica]on systems. 

User Interface Technologies for 
human-computer 
interac]on, including 
augmented reality, 
hap]cs, and 
input/output devices. 

Supports the EU Digital 
Strategy by enhancing 
user interac]on in 
digital environments 
and enabling seamless 
integra]on. 

Conven]onal input devices, 
Display devices, Augmented 
reality,  Hap]cs and Tele-hap]cs, 
Virtual Reality 
Touchscreens/kiosks for 
customer interface, Sound 
technologies, Neuroscanning 
and  
Gamifica]on 

Note: Based on Rytkova, Ciarli, and Önder 2022 Appendix B & C. Data Management and Data 
acquisition technologies were merged in one category due to their similarity 

Table S1.2: Green technologies classification. 

Category descripPon Policy Relevance Examples 

Energy Technologies for clean 
energy genera]on, 
storage, transmission, 
and efficient use, 
cri]cal for sustainable 
energy transi]ons. 

Aligns with the EU's Renewable 
Energy Direc]ve and Repower 
EU; fundamental to achieving the 
net-zero targets of the European 
Green Deal and SDGs. 

Photovoltaic systems, 
wind turbines, energy 
storage systems, smart 
grid technologies. 

Transport  Technologies 
transforming air, 
mari]me, rail, and road 
transport to reduce 
emissions and enhance 
sustainability. 

Integral to the EU Sustainable and 
Smart Mobility Strategy, focusing 
on reducing emissions across air, 
mari]me, rail, and road 
transport. 

Electric vehicle baferies, 
hydrogen-powered 
ships, rail electrifica]on 
systems, sustainable 
avia]on fuels. 

Building  Technologies aimed at 
reducing energy 
consump]on and 
improving efficiency in 
building construc]on 
and usage. 

Supports the EU’s Energy 
Performance of Buildings 
Direc]ve; essen]al to achieving 
climate neutrality in urban 
environments by 2050. 

Thermally efficient 
materials, solar hea]ng 
systems, energy-efficient 
ligh]ng. 
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Category descripPon Policy Relevance Examples 

Food  Technologies focused 
on sustainable food 
produc]on, 
distribu]on, and 
consump]on to 
address mi]ga]on and 
adapta]on challenges. 

Aligns with the EU Farm to Fork 
Strategy, addressing both 
mi]ga]on and adapta]on 
strategies for sustainable food 
systems. 

Precision agriculture, 
ver]cal farming systems, 
bio-based packaging. 

Material 
Producing and 
Processing 

Technologies that 
minimize 
environmental impact 
in material produc]on 
and processing, 
suppor]ng industrial 
and supply chain 
transforma]ons. 

Aligns with the EU Circular 
Economy Ac]on Plan, focusing on 
reducing the environmental 
impact of materials and 
suppor]ng industrial 
transforma]on. 

Carbon capture in steel 
produc]on, alterna]ve 
cement formula]ons, 
sustainable chemical 
synthesis. 

Waste 
Management 

Technologies for 
recycling, reuse, and 
waste reduc]on, 
essen]al for mi]ga]ng 
pollu]on and 
transi]oning to a 
circular economy. 

Addresses the EU Waste 
Framework Direc]ve, focusing on 
recycling, reuse, and waste 
reduc]on to mi]gate historical 
and ongoing pollu]on. 

Advanced plas]c 
recycling processes, bio-
waste processing, 
circular economy 
innova]ons. 

Nature-Based 
SoluPons (N) 

Technologies leveraging 
natural processes for 
ecosystem 
conserva]on, 
restora]on, and 
biodiversity 
enhancement. 

Supports the EU Biodiversity 
Strategy for 2030, focusing on 
ecosystem conserva]on, 
restora]on, and monitoring. 

Technologies for 
afforesta]on, habitat 
restora]on, biodiversity 
tracking. 

Phase-Out or 
TransiPoning 
Technologies  

Technologies ]ed to 
fossil fuel op]miza]on, 
combus]on engines, 
and nuclear energy, 
addressing phase-out 
and transi]on 
strategies. 

Evaluates technologies linked to 
the petrochemical industry, 
combus]on engines, and nuclear 
energy, reflec]ng diverse regional 
policy priori]es. 

Combus]on engines, 
fossil fuel op]miza]on, 
fusion energy, nuclear 
energy. 

 
 

Supplementary Material 2: Cognitive convergence of DAT and green patents 

In order to identify additional twin patent families, co-citation coupling is used. This method is widely 
used in bibliometric methods for identifying meaningful interactions between publications and 
establishing thresholds of interaction between scientific articles (Grauwin and Jensen, 2011; Romero-
Goyeneche et al., 2025, 2022). Similarly, in our analysis, a meaningful coupling between green and 
digital patent families is determined. For this analysis, the links of every bipartite network are 
characterised. All patent families and scientific publications that shared at least one linkage with green 
and digital are identified.  

The relevance of each citation is determined based on its probability of appearance in the dataset and 
the number of citations that every patent has. It is important to note that the probabilities of 
interaction differ across these matrices due to variations in the sizes of the patent and scientific 
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publications datasets. Patent families or scientific publication with higher number of citation have a 
higher baseline probability of interaction, which is taken into account when calculating these 
correspondence probabilities.  

The Cognitive Coupling (CC) is calculated for each dataset using a step-by-step method. The Digital-
Twin Interaction Matrix is used here as an example to illustrate the process: 

I. Calculate Relative Relevance (RR): For each cited twin patent family, the Relative Relevance 
(RR) is calculated as: 

𝑹𝑹𝒕𝒑𝒇 =
	𝒄𝒕𝒑

∑ 𝑪𝒋𝑵
𝒋*𝟏

 

Where 𝒄𝒕𝒑 is the count of occurrences of the cited twin patent family (𝒕𝒑) , and  ∑ 𝑪𝒋𝑵
𝒋*𝟏  is the total 

count of occurrences of all cited twin patents families (𝒕𝒑) in the dataset. This step quantifies the 
significance of each cited twin patent family (𝒕𝒑) relative to the entire set of twin-cited patent 
families.  

II. Determine Weight of Interaction (WI): for each digital patent family (𝒅𝒑), the commonly cited 
patent families shared with twins’ patent families (𝒕𝒑) are identified (𝒅𝒑𝜺𝜹𝒕𝒑). The weight 
of interaction (WI) is then calculated as:  

𝑾𝑰𝒅𝒑 =7 𝑹𝑹𝒕𝒑
𝒅𝒑𝜺𝜹𝒕𝒑

 

Where 𝑹𝑹𝒕𝒑 is the Relative Relevance of each shared twin cited patent family (𝒕𝒑) as calculated in 
Step 1. This calculation aggregates the relative significance of all twin patent families (𝒕𝒑) that are 
linked to a given digital patent family (𝒅𝒑),  

III. Account for Citation Size with Ratio of Interaction (RI): To adjust for the size of each digital 
patent family (𝒅𝒑),  the Ratio of Interaction (RI) is computed as:  

𝑹𝑰𝒅𝒑 =
𝑪𝒔,𝒅𝒑
𝑪𝒅𝒑

 

Where 𝑪𝒔,𝒅𝒑 is the number of citations from the given digital patent family (𝒅𝒑)	 that twin patent 
families also cite (𝒕𝒑) and 𝑪𝒅𝒑 is the total number of citations made by a given digital patent family 
(𝒅𝒑). This ratio quantifies the proportion of citations from a given digital patent family that overlap 
with twin patent families, providing a normalised measure of their interaction while accounting for 
the total citation activity of each digital patent family. This ensures fairness by normalising citation 
frequencies across patent families of varying sizes. 

IV. Calculate Cognitive Coupling (CC): for each digital patent family, (𝒅𝒑) the cognitive coupling 
with twin patent families (𝒕𝒑) is calculated by multipling the Weight of Interaction (WI) and 
the Ratio of Interaction (RI) as:  

𝑪𝑪𝒅𝒑 = 𝑾𝑰𝒅𝒑. 𝑹𝑰𝒅𝒑 

This calculation ensures that the CC metric accounts for both the size of each digital patent family and 
the frequency of shared citations between digital and twin patent families.  

After calculating the cognitive coupling of each digital patent family, it is important to assess which 
linkages or couplings are significant. To identify digital patent families that have meaningful 
interactions with twin patent families, the distribution of Cognitive Coupling (CC) values across all 
digital patent families is modelled as follows: 

V. Log Transformation of Cognitive Coupling: for each patent digital family, their 𝑪𝑪𝒅𝒑 values are 
log-transformed in order to stabilise variance and handle skewness:  
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𝑳𝒐𝒈	(𝑪𝑪𝒅𝒑) = 𝑳𝒐𝒈𝟏𝟎(𝑪𝑪𝒅𝒑 + 𝟏) 

Where 𝑪𝑪𝒅𝒑 is the original Cognitve couple valued assaulted in step iv, and +1 avoids issues with 
undefined logarithms for zero values.  

VI. Fit the power-law model: A power model-law distribution is fitted to the log-transformed 
𝑪𝑪𝒅𝒑 values. The probability density function 𝑷(𝒙) of the power-low distribution is:  

𝑷(𝒙) =
∝ −𝟏
𝒙𝒎𝒊𝒏

(
𝒙

𝒙𝒎𝒊𝒏
)3∝, 𝒙 ≥ 	𝒙𝒎𝒊𝒏	 

Where 𝜶 is the scaling parameter, 𝒙𝒎𝒊𝒏 is the threshold above which the distribution follows a power 
law and 𝒙	is the value of 𝑳𝒐𝒈	(𝑪𝑪𝒅𝒑) . The model estimates 𝒙𝒎𝒊𝒏 the minimum value at which the 
power-law behaviour begins, using maximum likelihood estimation (MLE). This threshold separates 
the ‘tail region’ of the distribution, representing the most significant cognitive couplings. In this regard, 
digital patent families  (𝒅𝒑)	with 𝑳𝒐𝒈	(𝑪𝑪𝒅𝒑) 	≥ 	𝒙𝒎𝒊𝒏 are selected as meaningful, representing the 
tail region data of the distribution where significant interactions with twin patent families occur (𝒕𝒑) 

 

Supplementary Material 3: Relatedness Density Average calculation 
The Relatedness Density Average (RDA) values range from 0 to 100, with higher values indicating a 
greater potential for diversification into digital, green, or twin technologies. The calculation of 
Relatedness Density Average (RDA) provides a comprehensive overview of each region’s ability to 
transition into new technological domains, supporting digital, green twin transitions.  

This method is based on the concept of technological similarity between regions. The more similar 
one region is to all the other, the greater the opportunity for developing comparable diversification 
patterns. This methodology integrates co-occurrence matrices, relatedness indices, RCA, and 
relatedness density to systematically evaluate regional diversification potential. By combining these 
steps, the analysis highlights opportunities for regional technological convergence and specialization. 
The calculation is performed as follows: 

i. Analysing the co-occurrence of technologies across European regions requires the 
construction of co-occurrence matrices. In this analysis, CPC patent codes are used as a proxy 
for technologies, with regions examined at the NUTS-2 level. The co-occurrence matrix 𝑴 
represents the distribution of technologies across regions: 

𝑴 =	D
𝒙𝒓𝟏𝒕𝒄𝟏 ⋯ 𝒙𝒓𝟏𝒕𝒄𝒎
⋮ ⋱ ⋮

𝒙𝒓𝒏𝒕𝒄𝒎 ⋯ 𝒙𝒓𝒏𝒕𝒄𝒎
H 

 

Where, 𝒓𝟏,𝒓𝟐… , 𝒓𝒏: Regions,  𝒕𝒄𝟏,𝒕𝒄𝟐… , 𝒕𝒄𝒏: technological classes, and 𝒙𝒓𝒏𝒕𝒄𝒎  takes binary values 1 
if a region 𝒓𝟏, has a patent in technology 𝒕𝒄𝟏, and otherwise 0  

 

ii. This matrix forms the basis for all subsequent calculations. Each row represents the 
technological portfolio of a specific region, while each column shows the distribution of a 
specific technology across regions. 

 

To measure the relationships between technologies, a technology co-occurrence matrix 𝐶 is derived 
from 𝑴.  
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𝑪 =	D
𝒄𝒕𝟏𝒕𝒄𝟏 ⋯ 𝒄𝒕𝒄𝟏𝒕𝒄𝒎
⋮ ⋱ ⋮

𝒄𝒓𝒎𝒕𝒄𝟏𝒎 ⋯ 𝒄𝒕𝒄𝒎𝒕𝒄𝒎
H 

Each element 𝒄𝒕𝒊𝒕𝒋𝟏  is calculated as:  

𝒄𝒓𝟏𝒓𝟐 =7𝒙𝒓𝒊𝒕𝒄𝒋

𝒏

𝒓*𝟏

. 𝒙𝒓𝒊𝒕𝒄𝒋  

Where, 𝒄𝒕𝒄𝒊𝒋 represents the number of regions where both technologies 𝒕𝒄𝒊	and 𝒕𝒄𝒋	 converge and 𝒏 
is the total number of technologies.  

iii. The Relatedness Index (RI) normalizes the co-occurrence matrix 𝐶 to assess whether two 
technologies are more related than expected by chance. It is calculated as 

𝑹𝒕𝟏𝒕𝟐 =	
𝒄𝒕𝟏𝒕𝟐

M𝒄𝒕𝒄𝟏𝒕𝒄𝟏 . 𝒄𝒕𝒄𝟐𝒕𝒄𝟐
 

Where 𝒄𝒕𝟏𝒕𝟐: observed co-occurrence of technology 𝒕𝒄𝟏	and 𝒕𝒄𝟐, and 𝒄𝒕𝒄𝟏𝒕𝒄𝟏 . 𝒄𝒕𝒄𝟐𝒕𝒄𝟐  is the diagonal 
representing the total number of 𝒕𝒄𝟏	and 𝒕𝒄𝟐 respectively 

The Relatedness Index (RI) indicates regional technological proximity. To identify only significant 
interactions, it is converted into a binary matrix.  

𝑹𝒕𝒄𝟏𝒕𝒄𝟐 =	N
𝟏	𝒊𝒇	𝑹𝒕𝒄𝟏𝒕𝒄𝟐 	≥ 𝟏	
𝟎	𝒊𝒇	𝑹𝒕𝒄𝟏𝒕𝒄𝟐 	< 𝟏  

 

iv. The new step consists of analysing the Relative Technological advantage (RTA) to identify 
regional specialization, RCA is calculated for each region 𝒓 and technology 𝒕𝒄: 

 

𝑹𝑻𝑨𝒓,𝒕𝒄𝒕 =	
𝒙𝒓,𝒕𝒄𝒕 𝜮𝒕𝒏⁄ 𝒙𝒓,𝒕𝒄𝒕

𝜮𝒓 𝒙𝒓,𝒕𝒄𝒕 𝜮𝒓,𝒕⁄ 𝒙𝒓,𝒕𝒄𝒕  

𝒙𝒓,𝒕𝒏𝒕  is the total number of patents of a region 𝒓 in technology 𝒕𝒄  in a given time window t, 𝜮𝒕𝒏𝒙𝒓,𝒕𝒏𝒕  
is the total patents in a region 𝒓	across all technologies, and 𝜮𝒓,𝒕 𝒙𝒓,𝒕𝒏𝒕  is the total number of patents 
in technology 𝒕𝒏 across all regions.  

𝑹𝑻𝑨𝒓,𝒕𝒄𝒕 =	N
𝟏	𝒊𝒇	𝑹𝑻𝑨𝒓,𝒕𝒄𝒕 	≥ 𝟏	
𝟎	𝒊𝒇	𝑹𝑻𝑨𝒓,𝒕𝒄𝒕 	< 𝟏

 

RTA is a binary variable that takes value 1 when a region 𝒓 exhibits a higher share of patents in a 
specific technology class 𝒕𝒄, compared to other regions. If the criterion is not met, the Relative 
Technological advantage (RTA) takes a value of 0. 

v. Using the Relative Technological advantage (RTA) 	𝑹𝑻𝑨𝒓,𝒕𝒄𝒕  and the Relatedness Index 𝑹𝒕𝒄𝟏𝒕𝒄𝟐, 
the Relatedness Density is calculated to evaluate the likelihood of a region 𝒓	adopting a new 
technology 𝒕𝒏 in a given portfolio, in our case, digital, green or twin.  

𝑹𝑫𝒓,𝒕𝒅 =	
∑ 𝑹𝒕𝒄𝟏𝒕𝒄	𝟐 . 𝑹𝑻𝑨𝒓,𝒕𝒄

𝒕 	𝒕𝒊∈𝑵𝒕𝒄
∑ 𝑹𝒕𝒄𝟏𝒕𝒄	𝟐 	𝒕𝒊∈𝑵𝒕𝒄

 

Where 𝑵𝒕𝒄 is the number the set of technologies related to 𝒕𝒄. 

𝑹𝑫𝒓,𝒕𝒅 takes value from 0 to 10; the highest the value, the highest the probability of a region to adopt 
a new technology  𝒕𝒄.  
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vi. The Relatedness Density Average (RDA) provides a summary measure of diversification 
potential for each region, aggregating relatedness density across all technologies: 

𝑹𝑫𝑨𝒓 =
∑ 𝑹𝑫𝒓,𝒕𝒅𝒕

|𝑻|
 

 Where |𝑻| is the total number of technological classes and 𝑹𝑫𝒓,𝒕𝒅 is the Relatedness Density of each 
region 𝒓. The higher the RDA value, the highest the potential to diversify in new technologies. 

Supplementary Material 4: Trajectories Analysis 
To map regional trajectories across four categories over time, a heuristic approach based on distinct 
sums was employed. A numerical encoding scheme was utilized to identify the category—'Trapped,' 
'Digital,' 'Green,' or 'Co-existing'—assigned to each region during fourth periods. A key requirement 
of this encoding was that the sum of the values assigned to any three categories should not equal the 
value assigned to any one category or any of their possible sums. This condition is essential to avoid 
ambiguity and to ensure clear distinctions between regional trajectories. If the sum of three category 
values equal another category's value, it would become impossible to distinguish between a region 
that genuinely belonged to that single category and a region whose scores in three other categories 
summed to the same value. 

The set {1, 3, 5, 10} was used for this encoding. For example: 

• Region 1: If a region was 'Trapped' in period 1 (value 1), 'DAT' in period 2 (value 3), 'Green' in 
period 3 (value 5), and 'Trapped' in period 4 (value 10), its cumulative scores would be: 

o Trapped: 1 + 10 = 11 

o DAT: 3 

o Green: 5 

o Coexisting: 0 

• Region 2: Another region could be 'Digital' in period 1 (value 1), 'Trapped' in period 2 (value 
3), 'Trapped' in period 3 (value 5), and 'Green' in period 4 (value 10). Its cumulative scores 
would be: 

o Trapped: 3 + 5 = 8 

o DAT: 1 

o Green: 10 

o Twin: 0 

These examples illustrate that even when regions fall into the same categories across the four 
periods—albeit in different sequences—their cumulative values remain distinct, allowing for the 
mapping of varied trajectories. Following the application of this encoding method, each region's 
pathway is represented through these cumulative scores. Principal Component Analysis (PCA) is then 
employed to cluster similar pathways based on the relative proportions of time invested in each 
category. This clustering is independent of the specific numerical values assigned, as long as they 
preserve the distinct sum property. It is important to note that distinct sums create unique 
"fingerprints": the distinct sum property ensures that different sequences of category assignments 
yield different sets of cumulative scores. Subsequently, PCA analyses the patterns of these 
fingerprints, considering the proportion or relative contribution of each category to the overall 
trajectory. 
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Supplementary Material 5: Geographical Scientific Knowledge Convergence 
The analysis of scientific publications reveals distinct trends in the diversification of DAT and green 
technologies over time (Figure SM4-1). During the emergence phase, knowledge production is highly 
concentrated in a few regions, whereas the development phase is marked by its diffusion and broader 
distribution across Europe. These findings highlight the growing scientific potential of DAT and green 
technologies, underscoring the need to translate this progress into tangible social, economic, and 
environmental benefits for European regions. 

The spatial distribution of scientific publications in DAT and green technologies reveals distinct 
regional dynamics over time. During the emergence phase (2000–2010), knowledge production 
remains highly concentrated in a few regions, primarily in Western and Northern Europe, indicating 
the presence of strong research hubs in the early phases of the development of DAT and green 
technologies. As the development phase (2011–2021) progresses, scientific activity diffuses across a 
broader set of European regions. However, this diffusion is uneven—while some regions successfully 
expand their research capacity in DAT and green technologies, others remain largely excluded from 
knowledge production, especially in Eastern Europe. Notably, Germany, the Netherlands, and 
northern Italy strongly converge between DAT and green research.  

Additionally, some regions specialise in specific domains, potentially reflecting favourable conditions 
for sectoral development. France and Spain, for instance, show strong advancements in green 
research (during the development phase). Eastern European regions show a slower uptake, gradually 
increasing their presence in scientific publications. However, many peripheral regions, particularly in 
southeast Europe, such as Greece, remain at the margins of scientific production, indicating structural 
barriers limiting their ability to develop strong research capabilities in DAT or green technologies. 

Similar to the patent analysis, the temporal evolution of scientific publications in DAT and green 
technologies is categorized into distinct regional trajectories, as summarized in Figure SM4-2. This 
classification highlights how different regions have developed their research capabilities over time, 
distinguishing between those that have diversified into both DAT and green technologies, those that 
specialize in one field, and those that remain trapped in low knowledge production cycles. Regions 
with strong diversification potential in both DAT and green technologies are primarily concentrated in 
Central Europe, the UK, and parts of Scandinavia (greenish-blue colour). In contrast, regions trapped 
in a low diversification cycle are represented in shades of pink. While trapped regions are more spread 
across Europe in the case of scientific publications, Southern and Eastern Europe still contain the 
highest concentration of regions with persistently low diversification. Regions specializing in DAT are 
shown in shades of blue, with darker shades indicating those that have mainly specialised in DAT 
throughout the four-time windows, such as the Eastern Finland Province. Lighter blue shades 
represent regions that initially belonged to other categories but eventually specialised in DAT, such as 
West Wales and the South-West of Finland. A similar classification applies to regions specialising in 
green technologies, shown in shades of green. Examples of regions specialising in scientific 
publications on green technologies include Andalusia in Spain and Centre-Val de Loire in France. 
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Figure S5.1. Relatedness Density Average in DAT and Green technologies from 2000 to 2021 using  scientific publications data. 
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Figure S5.2. Regional Trajectories for Diversification in DAT and Green Technologies using publication data. Panel 
(a) displays the regional classification based on diversification trajectories in DAT and green technologies. Panel 
(b) presents the results of the Principal Component Analysis (PCA), which identifies key patterns in regional 
technological development. Panel (c) illustrates the variance explained by the first three PCA axes, which 
together account for more than 95% of the total variance, confirming the robustness of the classification 
 
 
 
 
 
 
 

 

Conv-DAT Conv-Green

Convergence

DAT

DAT-Trapped

Green

Green-Trapped

Non-Publishing

Trapped

Relatedness Density Average PCA

PCA Analysis 

Variance explanation

a) b)

c)



 

 
This project has received funding from the European Union’s Horizon Europe under grant 
agreement No 101132559. 

 

50 

7. References 
Al Kez, D., Foley, A.M., Laverty, D., Del Rio, D.F., Sovacool, B., 2022. Exploring the 

sustainability challenges facing digitalization and internet data centers. J. Clean. 
Prod. 371, 133633. https://doi.org/10.1016/j.jclepro.2022.133633 

Aloisi, A., 2025. Integrating the EU Twin (Green and Digital) Transition? Synergies, Tensions 
and Pathways for the Future of Work. 

Antonietti, R., Burlina, C., Rodríguez-Pose, A., 2025. Digital technology and regional income 
inequality: Are better institutions the solution? Pap. Reg. Sci. 104, 100079. 
https://doi.org/10.1016/j.pirs.2025.100079 

Arroyave, Romero, O., Jenkins, J., Gore, M., Heimeriks, G., Petersen, A., 2021. The social and 
cognitive dimensions of solution uncertainty underlying wicked problems. Adv. 
Complex Syst. in press. 

Arthur, B., 2009. The Nature of Technology: what it is and how it evolves, Frist. ed. Free 
Press. 

Arthur, W.B., 2007. The structure of invention. Res. Policy 36, 274–287. 
https://doi.org/10.1016/J.RESPOL.2006.11.005 

Bachtrögler-Unger, J., Balland, P.-A., Boschma, R., Schwab, T., 2023. Technological 
capabilities and the twin  transition in Europe: Opportunities for regional 
collaboration and economic  cohesion. https://doi.org/10.11586/2023017 

Balland, P.-A., 2017. Economic Geography in R: Introduction to the EconGeo package. Pap. 
Evol. Econ. Geogr. PEEG, Papers in Evolutionary Economic Geography (PEEG). 

Balland, P.-A., and Boschma, R., 2021. Complementary interregional linkages and Smart 
Specialisation: an empirical study on European regions. Reg. Stud. 55, 1059–1070. 
https://doi.org/10.1080/00343404.2020.1861240 

Balland, P.-A., and Rigby, D., 2017. The Geography of Complex Knowledge. Econ. Geogr. 93, 
1–23. https://doi.org/10.1080/00130095.2016.1205947 

Balland, P.-A., Boschma, R., 2024. An Evolutionary Approach to Regional Development Traps 
in European Regions. Pap. Evol. Econ. Geogr. PEEG, Papers in Evolutionary Economic 
Geography (PEEG). 

Balland, P.-A., Boschma ,Ron, Crespo ,Joan, and Rigby, D.L., 2019. Smart specialization policy 
in the European Union: relatedness, knowledge complexity and regional 
diversification. Reg. Stud. 53, 1252–1268. 
https://doi.org/10.1080/00343404.2018.1437900 

Basilico, S., Marzucchi, A., Montresor, S., 2024. Combining digital and green technologies in 
regions: how to close the gap with respect to the frontier? Pap. Evol. Econ. Geogr. 
PEEG, Papers in Evolutionary Economic Geography (PEEG). 

Bekamiri, H., Hain, D.S., Jurowetzki, R., 2024. PatentSBERTa: A deep NLP based hybrid model 
for patent distance and classification using augmented SBERT. Technol. Forecast. 
Soc. Change 206, 123536. https://doi.org/10.1016/j.techfore.2024.123536 

Bettencourt, L.M.A., Kaiser, D.I., Kaur, J., 2009. Scientific discovery and topological 
transitions in collaboration networks. J. Informetr. 3, 210–221. 
https://doi.org/10.1016/J.JOI.2009.03.001 



 

 
This project has received funding from the European Union’s Horizon Europe under grant 
agreement No 101132559. 

 

51 

Bettencourt, L.M.A., Kaur, J., 2011. Evolution and structure of sustainability science. Proc. 
Natl. Acad. Sci. U. S. A. 108, 19540–19545. 
https://doi.org/10.1073/pnas.1102712108 

Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E., 2008. Fast unfolding of 
communities in large networks. J. Stat. Mech. Theory Exp. 2008, P10008. 
https://doi.org/10.1088/1742-5468/2008/10/P10008 

Bogers, M., Biermann, F., Kalfagianni, A., Kim, R.E., 2022. Sustainable Development Goals fail 
to advance policy integration: A large-n text analysis of 159 international 
organizations. Environ. Sci. Policy 138, 134–145. 
https://doi.org/10.1016/j.envsci.2022.10.002 

Bohnsack, R., Bidmon, C.M., Pinkse, J., 2022. Sustainability in the digital age: Intended and 
unintended consequences of digital technologies for sustainable development. Bus. 
Strategy Environ. 31, 599–602. https://doi.org/10.1002/bse.2938 

Boschma, R., 2017. Relatedness as driver of regional diversification: a research agenda. Reg. 
Stud. 51, 351–364. https://doi.org/10.1080/00343404.2016.1254767 

Boschma, R., Coenen, L., Frenken, K., Truffer, B., 2017. Towards a theory of regional 
diversification: combining insights from Evolutionary Economic Geography and 
Transition Studies. Reg. Stud. 51, 31–45. 
https://doi.org/10.1080/00343404.2016.1258460 

Boschma, R., Heimeriks, G., Balland, P.A., 2014. Scientific knowledge dynamics and 
relatedness in biotech cities. Res. Policy 43, 107–114. 
https://doi.org/10.1016/j.respol.2013.07.009 

Breschi, S., Lenzi, C., 2015. The Role of External Linkages and Gatekeepers for the Renewal 
and Expansion of US Cities’ Knowledge Base, 1990–2004. Reg. Stud. 49, 782–797. 
https://doi.org/10.1080/00343404.2014.954534 

Brisbois, M.C., 2020. Decentralised energy, decentralised accountability? Lessons on how to 
govern decentralised electricity transitions from multi-level natural resource 
governance. Glob. Transit. 2, 16–25. https://doi.org/10.1016/j.glt.2020.01.001 

Brodnik, C., Matti, C., Romero-Goyeneche, O.Y., 2025. Systemic intermediation for 
transformative research and innovation policy: intermediation activities and 
networks enabled through a portfolio approach. Innov. Eur. J. Soc. Sci. Res. 0, 1–22. 
https://doi.org/10.1080/13511610.2024.2444535 

Castaldi, C., Frenken, K., Los, B., 2015. Related Variety, Unrelated Variety and Technological 
Breakthroughs: An analysis of US State-Level Patenting. Reg. Stud. 49, 767–781. 
https://doi.org/10.1080/00343404.2014.940305 

Chauhan, C., Parida, V., Dhir, A., 2022. Linking circular economy and digitalisation 
technologies: A systematic literature review of past achievements and future 
promises. Technol. Forecast. Soc. Change 177, 121508. 
https://doi.org/10.1016/j.techfore.2022.121508 

Chen, C., Hicks, D., 2004. Tracing knowledge diffusion. Scientometrics 59, 199–211. 
https://doi.org/10.1023/b:scie.0000018528.59913.48 

Diodato, D., Huergo ,Elena, Moncada-Paternò-Castello ,Pietro, Rentocchini ,Francesco, and 
Timmermans, B., 2023. Introduction to the special issue on “the twin (digital and 
green) transition: handling the economic and social challenges.” Ind. Innov. 30, 755–
765. https://doi.org/10.1080/13662716.2023.2254272 



 

 
This project has received funding from the European Union’s Horizon Europe under grant 
agreement No 101132559. 

 

52 

Dolfsma, W., Leydesdorff, L., 2009. Lock-in and break-out from technological trajectories: 
Modeling and policy implications. Technol. Forecast. Soc. Change 76, 932–941. 
https://doi.org/10.1016/j.techfore.2009.02.004 

Dosi, G., 1997. Opportunities, Incentives and the Collective Patterns of Technological 
Change. Econ. J. 107, 1530–1547. https://doi.org/10.1111/j.1468-
0297.1997.tb00064.x 

Dosi, G., 1988. Sources, Procedures, and Microeconomic Effects of Innovation. J. Econ. Lit. 
26, 1120–1171. 

Dosi, G., Nelson, R.R., 2010. Chapter 3 - Technical Change and Industrial Dynamics as 
Evolutionary Processes, in: Hall, B.H., Rosenberg, N. (Eds.), Handbook of the 
Economics of Innovation, Handbook of The Economics of Innovation, Vol. 1. North-
Holland, pp. 51–127. https://doi.org/10.1016/S0169-7218(10)01003-8 

European Commission, 2024. Forging a sustainable future together: cohesion for a 
competitive and inclusive Europe : report of the High Level Group on the Future of 
Cohesion Policy. Publications Office of the European Union. 

European Commission, Joint Research Centre, Muench, S., Stoermer, E., Jensen, K., 
Asikainen, T., Salvi, M., Scapolo, F., 2022. Towards a green & digital future (No. JRC 
1293919). Joint Research Centre, Luxembourg. https://doi.org/10.2760/977331 

European Commisssion, 2022. on the 8th Cohesion Report: Cohesion in Europe towards 
2050. 

Faggian, A., Marzucchi ,Alberto, and Montresor, S., 2025. Regions facing the ‘twin 
transition’: combining regional green and digital innovations. Reg. Stud. 59, 2398555. 
https://doi.org/10.1080/00343404.2024.2398555 

Favot, M., Vesnic, L., Priore, R., Bincoletto, A., Morea, F., 2023. Green patents and green 
codes: How different methodologies lead to different results. Resour. Conserv. 
Recycl. Adv. 18, 200132. https://doi.org/10.1016/j.rcradv.2023.200132 

Fleming, L., King, C., Juda, A.I., 2007. Small Worlds and Regional Innovation. Organ. Sci. 18, 
938–954. https://doi.org/10.1287/orsc.1070.0289 

Frenken, K., Oort, F.V., Verburg, T., 2007. Related variety, unrelated variety and regional 
economic growth. Reg. Stud. 41, 685–697. 
https://doi.org/10.1080/00343400601120296 

Frickel, S., Gross, N., 2005. A general theory of scientific/intellectual movements. Am. Sociol. 
Rev. https://doi.org/10.1177/000312240507000202 

Grauwin, S., Jensen, P., 2011. Mapping scientific institutions. Scientometrics 89, 943–954. 
https://doi.org/10.1007/s11192-011-0482-y 

Grillner, S., Ip, N., Koch, C., Koroshetz, W., Okano, H., Polachek, M., Poo, M., Sejnowski, T.J., 
2016. Worldwide initiatives to advance brain research. Nat. Neurosci. 19, 1118–
1122. https://doi.org/10.1038/nn.4371 

Guan, J., Liu, N., 2016. Exploitative and exploratory innovations in knowledge network and 
collaboration network: A patent analysis in the technological field of nano-energy. 
Res. Policy 45, 97–112. https://doi.org/10.1016/j.respol.2015.08.002 

Ha, L.T., Huong, T.T.L., Thanh, T.T., 2022. Is digitalization a driver to enhance environmental 
performance? An empirical investigation of European countries. Sustain. Prod. 
Consum. 32, 230–247. https://doi.org/10.1016/j.spc.2022.04.002 



 

 
This project has received funding from the European Union’s Horizon Europe under grant 
agreement No 101132559. 

 

53 

Hain, D.S., Jurowetzki, R., Buchmann, T., Wolf, P., 2022. A text-embedding-based approach 
to measuring patent-to-patent technological similarity. Technol. Forecast. Soc. 
Change 177, 121559. https://doi.org/10.1016/j.techfore.2022.121559 

Heimeriks, G., Balland, P.A., 2016. How smart is specialisation? An analysis of specialisation 
patterns in knowledge production. Sci. Public Policy 43, 562–574. 
https://doi.org/10.1093/scipol/scv061 

Heimeriks, G., Leydesdorff, L., 2012. Emerging search regimes: measuring co-evolutions 
among research, science, and society. Technol. Anal. Strateg. Manag. 24, 51–67. 
https://doi.org/10.1080/09537325.2012.643562 

Helbing, D., 2012. Accelerating scientific discovery by formulating grand scientific 
challenges. Eur. Phys. J. Spec. Top. 214, 41–48. https://doi.org/10.1140/epjst/e2012-
01687-x 

Hidalgo, C.A., Klinger, B., Barabási, A.-L., Hausmann, R., 2007. The Product Space Conditions 
the Development of Nations. Science 317, 482–487. 
https://doi.org/10.1126/science.1144581 

Hughes, J.A., 2003. The Manhattan Project: Big Science and the Atom Bomb. Columbia 
University Press. 

Iammarino, S., Rodriguez-Pose, A., Storper, M., 2019. Regional inequality in Europe: 
evidence, theory and policy implications. J. Econ. Geogr. 19, 273–298. 
https://doi.org/10.1093/jeg/lby021 

Johnstone, P., Kanger, L., Schot, J., 2024. Deep transitions and the evolution of the digital 
meta-regime. 

Kauffman, S., 2019. A World Beyond Physics, First. ed. Oxford University Press. 
Kivimaa, P., Boon, W., Hyysalo, S., Klerkx, L., 2019. Towards a typology of intermediaries in 

sustainability transitions: A systematic review and a research agenda. Res. Policy 48, 
1062–1075. https://doi.org/10.1016/j.respol.2018.10.006 

Kogler, D.F., Rigby ,David L., and Tucker, I., 2013. Mapping Knowledge Space and 
Technological Relatedness in US Cities. Eur. Plan. Stud. 21, 1374–1391. 
https://doi.org/10.1080/09654313.2012.755832 

Kovacic, Z., García Casañas, C., Argüelles, L., Yáñez Serrano, P., Ribera-Fumaz, R., Prause, L., 
March, H., 2024. The twin green and digital transition: High-level policy or science 
fiction? Environ. Plan. E 7, 2251–2278. https://doi.org/10.1177/25148486241258046 

Lee, N., Clarke, S., 2019. Do low-skilled workers gain from high-tech employment growth? 
High-technology multipliers, employment and wages in Britain. Res. Policy 48, 
103803. https://doi.org/10.1016/j.respol.2019.05.012 

Lesch, D., Miörner, J., Binz, C., 2023. The Role of Global Actors in Sustainability Transitions – 
Tracing the Emergence of a Novel Infrastructure Paradigm in the Sanitation Sector. 
Environ. Innov. Soc. Transit. 49, 100787. https://doi.org/10.1016/j.eist.2023.100787 

Lewis, J.I., Toney, A., Shi, X., 2024. Climate change and artificial intelligence: assessing the 
global research landscape. Discov. Artif. Intell. 4, 64. 
https://doi.org/10.1007/s44163-024-00170-z 

Mäkitie, T., Hanson, J., Damman, S., Wardeberg, M., 2023. Digital innovation’s contribution 
to sustainability transitions. Technol. Soc. 73, 102255. 
https://doi.org/10.1016/j.techsoc.2023.102255 



 

 
This project has received funding from the European Union’s Horizon Europe under grant 
agreement No 101132559. 

 

54 

Meeks, R.C., Thompson, H., Wang, Z., 2025. Decentralized renewable energy to grow 
manufacturing? Evidence from microhydro mini-grids in Nepal. J. Environ. Econ. 
Manag. 130, 103092. https://doi.org/10.1016/j.jeem.2024.103092 

Newman, M.E.J. (Mark E.J.), 2018. Networks, second. ed. Oxford University Press. 
Papachristos, G., Sofianos, A., Adamides, E., 2013. System interactions in socio-technical 

transitions: Extending the multi-level perspective. Environ. Innov. Soc. Transit. 7, 53–
69. https://doi.org/10.1016/j.eist.2013.03.002 

Penna, C.C.R., Romero Goyeneche, O.Y., Matti, C., 2023. Exploring indicators for monitoring 
sociotechnical system transitions through portfolio networks. Sci. Public Policy 50, 
719–741. https://doi.org/10.1093/scipol/scad015 

Pennington, J., Socher, R., Manning, C., 2014. GloVe: Global Vectors for Word 
Representation, in: Moschitti, A., Pang, B., Daelemans, W. (Eds.), Proceedings of the 
2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). 
Presented at the EMNLP 2014, Association for Computational Linguistics, Doha, 
Qatar, pp. 1532–1543. https://doi.org/10.3115/v1/D14-1162 

Perez, C., 2009. Technological revolutions and techno-economic paradigms. Camb. J. Econ. 
34, 185–202. https://doi.org/10.1093/cje/bep051 

Perez, C., 2002. Technological revolutions and financial capital : the dynamics of bubbles 
and golden ages. E. Elgar Pub. 

Petersen, A.M., Ahmed, M.E., Pavlidis, I., 2021. Grand challenges and emergent modes of 
convergence science. Humanit. Soc. Sci. Commun. 8, 1–15. 
https://doi.org/10.1057/s41599-021-00869-9 

Petersen, A.M., Arroyave, Pavlidis, I., 2023. Methods for measuring social and conceptual 
dimensions of convergence science. Res. Eval. 32, 256–272. 
https://doi.org/10.1093/reseval/rvad020 

Petersen, A.M., Majeti, D., Kwon, K., Ahmed, M.E., Pavlidis, I., 2018. Cross-disciplinary 
evolution of the genomics revolution. Sci. Adv. 4, eaat4211. 
https://doi.org/10.1126/sciadv.aat4211 

Piscicelli, L., 2023. The sustainability impact of a digital circular economy. Curr. Opin. 
Environ. Sustain. 61, 101251. https://doi.org/10.1016/j.cosust.2022.101251 

Prytkova, E., Ciarli, T., Önder, N., 2022. PILLARS – Pathways to Inclusive Labour Markets: 
Dataset of Emerging Automation Technologies Related to Industry 4.0 (No. 3.1), 
Technical report. Europen Union Horizon 2020. 

Rigby, D.L., Roesler, C., Kogler, D., Boschma, R., Balland, P.-A., 2022. Do EU regions benefit 
from Smart Specialisation principles? Reg. Stud. 56, 2058–2073. 
https://doi.org/10.1080/00343404.2022.2032628 

Roco, M.C., Bainbridge, W.S., Tonn, B., Whitesides, G. (Eds.), 2013. Convergence of 
Knowledge, Technology and Society: Beyond Convergence of Nano-Bio-Info-
Cognitive Technologies, Science Policy Reports. Springer International Publishing, 
Cham. https://doi.org/10.1007/978-3-319-02204-8 

Romero-Goyeneche, O.Y., Heimeriks, G., Arroyave, F., 2025. How Uncertain is the 
Emergence of Knowledge Related to the United Nations Sustainable Development 
Goals? An Analysis of Scientific Knowledge Diversification at Utrecht University. 
Sustain. Dev. https://doi.org/10.1002/sd.3392 



 

 
This project has received funding from the European Union’s Horizon Europe under grant 
agreement No 101132559. 

 

55 

Romero-Goyeneche, O.Y., Ramirez, M., Schot, J., Arroyave, F., 2022. Mobilizing the 
transformative power of research for achieving the Sustainable Development Goals. 
Res. Policy 51, 104589. https://doi.org/10.1016/j.respol.2022.104589 

Schot, J., Kanger, L., 2018. Deep transitions: Emergence, acceleration, stabilization and 
directionality. Res. Policy 47, 1045–1059. 
https://doi.org/10.1016/J.RESPOL.2018.03.009 

Simoens, M.C., Fuenfschilling, L., Leipold, S., 2022. Discursive dynamics and lock-ins in socio-
technical systems: an overview and a way forward. Sustain. Sci. 17, 1841–1853. 
https://doi.org/10.1007/s11625-022-01110-5 

Sitthiyot, T., Holasut, K., 2020. A simple method for measuring inequality. Palgrave 
Commun. 6, 1–9. https://doi.org/10.1057/s41599-020-0484-6 

Steijn, M.P.A., Balland, P.-A., Boschma, R., Rigby, D.L., 2023. Technological diversification of 
U.S. cities during the great historical crises. J. Econ. Geogr. 23, 1303–1344. 
https://doi.org/10.1093/jeg/lbad013 

Stephan, P., 2012. How Economics Shapes Science. Harvard University Press. 
https://doi.org/10.4159/harvard.9780674062757 

Whitley, R., 2000. The intellectual and social organization of the sciences, Second. ed. 
Oxford University Press. 

Yan, E., Ding, Y., 2012. Scholarly network similarities: How bibliographic coupling networks, 
citation networks, cocitation networks, topical networks, coauthorship networks, 
and coword networks relate to each other. J. Am. Soc. Inf. Sci. Technol. 63, 1313–
1326. https://doi.org/10.1002/asi.22680 

Yao, Z., Lum, Y., Johnston, A., Mejia-Mendoza, L.M., Zhou, X., Wen, Y., Aspuru-Guzik, A., 
Sargent, E.H., Seh, Z.W., 2023. Machine learning for a sustainable energy future. Nat. 
Rev. Mater. 8, 202–215. https://doi.org/10.1038/s41578-022-00490-5 

 
 
 
 
 


